
ARTICLE IN PRESS

JID: NEUCOM [m5G; July 3, 2019;9:42]

Neurocomputing xxx (xxxx) xxx

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Hierarchical automatic curriculum learning: Converting a sparse

reward navigation task into dense reward

Nan Jiang

a , b , c , d , Sheng Jin

a , b , c , d , Changshui Zhang

a , b , c , d , ∗

a Institute for Artificial Intelligence,Tsinghua University (THUAI), Beijing, P.R. China
b State Key Lab of Intelligent Technologies and Systems, Beijing, P.R. China
c Beijing National Research Center for Information Science and Technology (BNRist), Beijing, P.R. China
d Department of Automation, Tsinghua University, Beijing, P.R. China

a r t i c l e i n f o

Article history:

Received 16 October 2018

Revised 11 March 2019

Accepted 3 June 2019

Available online xxx

Communicated by Dr. Kee-Eung Kim

Keywords:

Hierarchical reinforcement learning

Automatic curriculum learning

Sparse reward reinforcement learning

Sample-efficient reinforcement learning

a b s t r a c t

Mastering the sparse reward or long-horizon task is critical but challenging in reinforcement learning. To

tackle this problem, we propose a hierarchical automatic curriculum learning framework (HACL), which

intrinsically motivates the agent to hierarchically and progressively explore environments. The agent is

equipped with a target area during training. As the target area progressively grows, the agent learns to

explore from near to far, in a curriculum fashion. The pseudo target-achieving reward converts the sparse

reward into dense reward, thus the long-horizon difficulty is alleviated. The whole system makes hierar-

chical decisions, in which a high-level conductor travels through different targets, and a low-level execu-

tor operates in the original action space to complete the instructions given by the high-level conductor.

Unlike many existing works that manually set curriculum training phases, in HACL, the total curriculum

training process is automated and suits the agent’s current exploration capability. Extensive experiments

on three sparse reward tasks, long-horizon stochastic chain, grid maze, and the challenging Atari game

Montezuma’s Revenge, show that HACL achieves comparable or even better performance but with signif-

icantly less training frames.

© 2019 Elsevier B.V. All rights reserved.

1

I

i

v

d

a

l

p

g

m

r

l

p

g

P

j

m

b

w

f

t

r

r

p

e

h

t

b

d

u

f

f

h

0

. Introduction

The navigation ability is a core element of artificial intelligence.

t is a basic component of many intelligence-based applications,

ncluding but not limited to the household robot, unknown en-

ironment exploration, etc. Successful navigation requires an un-

erstanding of the environment, the current state, the final target,

nd the consequences of the actions. Recently deep reinforcement

earning has shown fascinating achievements on many tasks, e.g.

laying Atari games from raw pixels [1] , solving complex board

ame Go [2] , object detection [3,4] , image captioning [5,6] , and

astering locomotive control problems [7,8] . By utilizing deep neu-

al networks to promote image understanding, deep reinforcement

earning has been proposed to solve navigation tasks [9–13] .

For the navigation task, it learns a policy that maximizes target

lace achieving reward. Rewards provide information about how

ood each state and action is. However, the sparse reward environ-
∗ Corresponding author. Department of Automation, Tsinghua University, Beijing,

.R. China.

E-mail addresses: jiangn15@mails.tsinghua.edu.cn (N. Jiang),

s17@mails.tsinghua.edu.cn (S. Jin), zcs@mail.tsinghua.edu.cn (C. Zhang).

s

s

b

a

c

ttps://doi.org/10.1016/j.neucom.2019.06.024

925-2312/© 2019 Elsevier B.V. All rights reserved.

Please cite this article as: N. Jiang, S. Jin and C. Zhang, Hierarchical auto

task into dense reward, Neurocomputing, https://doi.org/10.1016/j.neuc
ents, which means non-zero rewards occur only at a tiny proba-

ility or after a long-horizon, pose a severe challenge. While many

orks on deep reinforcement learning achieve super-human per-

ormance on most Atari games, without informative exploration,

hey fail to learn a good policy on the infamous game Montezuma’s

evenge [1,7,14,15] .

Recently, a few works have been proposed to tackle the sparse

eward challenge. Some of them design prioritized experience re-

lay [16] for more instructive learning, some utilize prior knowl-

dge like demonstrations from experts [17–19] , some employ the

ierarchical reinforcement learning framework [20,21] or the in-

rinsic rewards [22–26] to guide exploration. These approaches can

e used separately or in conjunction to alleviate the sparse reward

ifficulty. However, there exist some limitations of these works. By

tilizing the demonstrations, it assumes the existence of success-

ul experience, thus limiting their application in unknown or un-

amiliar tasks. Some hierarchical reinforcement learning or intrin-

ic motivation approaches require the decomposable or reducible

tructure of the environment, such that downstream tasks could

e employed to learn skills. With the help of the pre-defined hier-

rchy, some basic skills are trained in advance and reused in later

omplex tasks [27,28] . As for some other works which do not rely
matic curriculum learning: Converting a sparse reward navigation

om.2019.06.024

https://doi.org/10.1016/j.neucom.2019.06.024
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
mailto:jiangn15@mails.tsinghua.edu.cn
mailto:js17@mails.tsinghua.edu.cn
mailto:zcs@mail.tsinghua.edu.cn
https://doi.org/10.1016/j.neucom.2019.06.024
https://doi.org/10.1016/j.neucom.2019.06.024

2 N. Jiang, S. Jin and C. Zhang / Neurocomputing xxx (xxxx) xxx

ARTICLE IN PRESS

JID: NEUCOM [m5G; July 3, 2019;9:42]

2

D

<

s

R

c

w

t

s

t

a

T

t

fi

J

2

c

t

e

i

t

t

a

t

s

t

d

m

M

s

m

p

e

H

b

R

a

m

D

a

m

c

n

{

o

b

2

m
on known hierarchy or demonstrations, they suffer from high de-

mands of training steps [16,23] .

We take the ideas of learning by steps, spatial-temporal ab-

straction, and knowledge reuse from human experiences aiming to

increase the data efficiency of training in sparse reward navigation

tasks. Three examples explain the ideas. When parents teach their

children to walk, they put the candy or toys in front of the baby,

and then move the toys further to encourage the baby to walk

further and further. If toys had been put in the distance from

the beginning, the baby wouldn’t be able to walk a long way, but

they would succeed by learning by steps. This idea is abstracted

as curriculum learning [29] and has been applied to many works

[10,30–34] . Also, human makes use of spatial-temporal abstraction

to simplify the navigation process. To visit a friend in another city,

we always plan the trip in three stages: travel from my home

to the station, then take a train to that city, and at last from

the train station to the friend’s home. Hierarchical reinforcement

learning employs this spatial-temporal abstraction. Hence it learns

to make hierarchical decisions to operate on different time-scales.

The last example shows how people reuse their knowledge when

navigating. John walks to the subway station then takes the sub-

way to work every day. The knowledge of the way to the subway

can be reused when he needs to visit other places by subway.

Such knowledge reuse is naive for human, but hard for the neural

network based agent. So, we anticipate a knowledge reuse in our

proposed framework.

To summarize, our framework is based on curriculum learning

and hierarchical reinforcement learning. It contains three compo-

nents: the high-level conductor, the low-level executor, and the

state graph. The high-level conductor gives high-level commands

to reach the target area or get extrinsic rewards. It operates at

a coarse timescale. Meanwhile, its action is set as the subgoal of

the low-level executor. The low-level executor, acting at a finer

timescale, aims to reach its subgoal. Also, we take advantages

of a state graph to enable automatic curriculum learning. While

most existing works manually set the curriculum training phase,

in our work the curriculum tasks are automatically generated dur-

ing training and well adjusted to the agent’s current navigation

capability. Meanwhile, a novel sub-module called HC-explore for

extensive exploration is introduced. The extensive exploration en-

dows the agent with the ability to do macro path planning. And

the knowledge reuse of the macro path planning further benefits

the agent when navigating to long-horizon places. Benefiting from

the ideas from human experiences, our hierarchical automatic cur-

riculum learning framework (HACL) makes challenging sparse re-

ward navigation task densely rewarded instead. Thus much fewer

training frames are required to learn a good navigation policy.

HACL has the following advantages, and we give a detailed anal-

ysis of them in experiments.

1. Spatial-temporal abstraction effectively reduces the size of

state space, allowing the automatically generated hierarchical

structure to enable clever exploration.

2. Curriculum setting converts the environment to be dense-

rewarded, and gradually but quickly guides the agent to explore

further.

3. Introduction of HC-explore enables efficient knowledge reuse

for long-horizon exploration by endowing the agent with the

ability of macro-state path planning.

Combining the above three advantages, the HACL agent learns

efficiently on the sparse reward tasks. Experiments show that our

method dramatically reduces the training steps.
Please cite this article as: N. Jiang, S. Jin and C. Zhang, Hierarchical auto

task into dense reward, Neurocomputing, https://doi.org/10.1016/j.neuc
. Notation and formulation

Reinforcement learning is based on the formulation of Markov

ecision Process(MDP). A Markov Decision Process is a tuple

 S, A , T , R , γ >, where S is a finite set of states, A is a finite

et of actions, T : S × A × S → [0 , 1] defines the transition model,

 : S × A → R represents the reward function, and γ is the dis-

ount factor.

The agent’s behavior, is defined by a policy, πθ : S × A → [0 , 1] ,

hich maps the states to a probability distribution over the ac-

ions. At each time step t = 1 , . . . , T , the agent stays at the state

 t ∈ S and selects action a t ∈ A according to its policy πθ to in-

eract with the environment. The agent then receives a reward r t
nd transits to the next state s t+1 , following the transition model

 . Reinforcement learning aims to learn a policy which maximizes

he expected discounted future reward from the initial state, de-

ned as

 π = E a i ∼π [R s 1]

= E a i ∼π [r 1 + γ r 2 + ...]

= E a i ∼π

[

∞ ∑

t=0

γ t r t+1

]

(1)

.1. Hierarchical formulation

Hierarchical reinforcement learning, following the divide-and-

onquer paradigm, decomposes a complex problem into some in-

errelated sub-problems. The options framework [35] is a gen-

ral formulation, which temporally abstracts a sequence of prim-

tive actions as an option. In addition to this temporal abstrac-

ion of actions, human tend to make use of their knowledge of

he environment at multiple scales of spatial abstractions. e.g.,

s introduced in Section 1 we usually abstract a long journey as

ransitions between several landmarks. To summarize, we utilize

patial-temporal abstractions to make the agent explore efficiently.

We define a spatial abstraction of states as a macro-state M i

o dramatically reduce the state space. The macro-state space is

enoted as M t = { M i : i = 1 , . . . , N t } , in which N t is the number of

acro-states at timestep t . More macro-states will be added into

 t while the agent travels further in the environment. Thus the

ize of macro-state space grows over time. Without ambiguity, we

ay ignore the subscript t to simplify notations in the following

aragraphs.

The macro-state abstracts close states into a group. As some

xisting works manually define the hierarchy in advance [21] , in

ACL, each state in the environment is assigned to one macro-state

ased on a domain-specific distance measurement Dist : S × M →
 . We denote the macro-state, to which the state s i is assigned,

s s (m)
i

. Based on this, we introduce the Coverage notion of each

acro-state:

efinition 2.1 (Coverage of macro-state) . For ∀ M i ∈ M , its cover-

ge is the set of states assigned to it: C i := { s j : s (m)
j

= M i }
Macro-actions are the temporal abstractions of variable-length

ultistep primitive actions. We expect the macro-actions to per-

eive some meaningful action patterns. A macro-action is de-

oted with u . The agent executes a sequence of macro-actions

 u 1 , u 2 , . . . , u m

, . . . } , and each macro-action represents a sequence

f primitive actions, u m

= { a (m)
1

, . . . , a (m)
n m } , in which n m

is the num-

er of the primitive actions in macro-action u m

.

.2. Curriculum formulation

Curriculum learning [29] makes the agent gradually learn to

aster a challenging task by constructing curricula of easy-to-hard
matic curriculum learning: Converting a sparse reward navigation

om.2019.06.024

https://doi.org/10.1016/j.neucom.2019.06.024

N. Jiang, S. Jin and C. Zhang / Neurocomputing xxx (xxxx) xxx 3

ARTICLE IN PRESS

JID: NEUCOM [m5G; July 3, 2019;9:42]

Fig. 1. Framework overview.

o

p

m

t

c

w

D

d

t

f

I

m

D

fi

t

l

∀

i

M

d

t

g

H

a

r

D

o

c

{
s

s

{

3

3

i

s

e

s

l

w

i

h

T

r

T

s

T

a

g

e

t

p

h

g

a

s

g

l

3

w

B

h

s

p

B

g
r clear-to-ambiguous tasks. Curriculum learning has been em-

loyed in many works [10,30,31] . However, most of these works

ake use of handcrafted curricula.

Therefore, we consider to build the curricula automatically: the

raining process automatically generates a sequence of tasks in a

urriculum fashion. We first define the difficulty measurements,

hich helps define the notion of curriculum sequence.

efinition 2.2 (Difficulty function on state space) . We define the

ifficulty function on the state space S . ∀ s i ∈ S , difficulty func-

ion f D : S → R , maps the state to a difficulty level. ∀ s i , s j ∈ S, if

 D (s i) < f D (s j), we say state s j is more difficult than state s i .

The difficulty function measures how difficult a state is to reach.

nduced by this, we could extend the difficulty metric on the

acro-state.

efinition 2.3 (Difficulty function on macro-state space) . The dif-

culty function on the macro-state ˆ f D : M → R , is induced by

he difficulty function f D , mapping the macro-state to a difficulty

evel.

 M i ∈ M , ˆ f D (M i) := sup

s j ∈ C i
f D (s j)

n which C i is the coverage of macro-state M i .

Similarly, ∀ M i , M j ∈ M , if ˆ f D (M i) <

ˆ f D (M j) , we say macro-state

 j is more difficult than M i . Considering the definition of ˆ f D , we

o not require all of the states in the coverage of macro-state M j

o be more difficult than those of macro-state M i .

After introducing the notions of difficulty measurements, we

ive the curriculum definition in our framework. In this case, the

ACL builds a curriculum sequence of macro-state sets as the

gent explores further in the environment,. The definition of Cur-

iculum Sequence is as follows.

efinition 2.4 (Curriculum Sequence of macro-state sets) . For an

rdered sequence of macro-state sets {M 1 , M 2 , . . . , M n } , it is a

urriculum sequence under difficulty function f if it satisfies: ∀ i =
D

Fig. 2. Three compon

Please cite this article as: N. Jiang, S. Jin and C. Zhang, Hierarchical auto

task into dense reward, Neurocomputing, https://doi.org/10.1016/j.neuc
 1 , 2 , . . . , n − 1 }
up M k ∈M i

ˆ f D (M k) < = sup M l ∈M i +1
ˆ f D (M l)

In the following, we will give the difficulty function f D , and

how that HACL builds a curriculum sequence of macro-state sets

M 1 , M 2 , . . . , M t , . . . } under f D during training.

. Methods and models

.1. Framework

The framework of our hierarchical automatic curriculum learn-

ng (HACL) is presented in Fig. 1 . Three major components: the

tate graph (SG), the high-level conductor (HC) and the low-level

xecutor (LE), work cooperatively in HACL.

In HACL, the agent is equipped with a target set of macro-

tates. A curriculum sequence of target sets enables curriculum

earning. By expanding the area of target sets, the agent learns to

alk further. In order to achieve more extrinsic rewards or reach-

ng the target macro-state M target (sampled from the target set), the

igh-level conductor gives macro path planning on macro-states.

he high-level conductor gives action of the next macro-state to

each, which is set as the subgoal g T for the low-level executor.

he low-level executor functions as an end-effector. It executes a

equence of primitive actions { a 1 , a 2 , . . . , a n T } , in order to reach g T .

he trajectories { s 1 , s 2 , . . . , s n T } collected by the low-level executor

re used to build and update the state graph. It models a coarse

raph of transitions between macro-states. This graph provides hi-

rarchy and curriculum information about the environment. Thus,

arget sets are generated based on the state graph. Also, it gives

seudo target-achieving rewards and goal-reaching rewards for the

igh-level conductor and low-level executor respectively. The tar-

et sets expand from near to far during learning and are well-

djusted to the agents current navigation capability. While extrin-

ic rewards are sparse, the pseudo target-achieving rewards and

oal-reaching rewards are dense.

We would explain these three components in detail in the fol-

owing sections.

.2. High-level conductor

The High-level Conductor (HC) gives macro-state path planning,

hich serves as long-range subgoals for the low-level executor.

y making use of hierarchical actions, it breaks the original long-

orizon action sequences into several transitions between macro-

tates.

The high-level conductor contains two sub-modules, one for ex-

loration (HC-explore), and the other for exploitation (HC-exploit).

oth two high-level conductors learn a macro-state policy π
θH
H

:

iven the current macro-state M , with or without the target
T

ents of HACL.

matic curriculum learning: Converting a sparse reward navigation

om.2019.06.024

https://doi.org/10.1016/j.neucom.2019.06.024

4 N. Jiang, S. Jin and C. Zhang / Neurocomputing xxx (xxxx) xxx

ARTICLE IN PRESS

JID: NEUCOM [m5G; July 3, 2019;9:42]

Fig. 3. The existing state graph is marked with small white indexes and white tran-

sitions. Fig. 3 a plots the agent’s trajectory in yellow and four updated macro-states

and their corresponding transitions in blue. The target set T in Fig. 3 b is marked

with large red indexes and yellow dots. T generates a curriculum sequence on the

order of macro-state indexes {1, 2, 5, 9, 12, 17}.

∇

∇

w

t

N

t

3

g

s

a

a

n

t

r

s

c

t

w

v

t

f

r

l

r

w

3

t

s

g

3

G

s

1

I

N

A

a

t

e

d

i

o

r

t

p
macro-state M target , it estimates a distribution of the next macro-

states M T +1 to reach. The function of the high-level conductor is

illustrated in Fig. 2 a.

Two high-level conductors are trained in parallel with dif-

ferent rewards, thus with different training purposes. HC-

explore aims to reach a high-level target macro-state M target ,

which is sampled from the state graph, explicitly, its policy

is πH explore
(M T +1 | M T , M target ; θH explore

) . HC-exploit, whose pur-

pose is to maximize the extrinsic rewards, learns a policy

πH exploit
(M T +1 | M T ; θH exploit

) . Meanwhile, the predicted next macro-

state M T +1 contemporarily acts as the subgoal g T +1 for the

low-level executor.

HC-explore learns to do macro-state path planning on macro-

states to reach a target macro-state M target . As the target extends

further in the environment, the agent could evoke its knowledge

about nearby states to travel to further states and explore rarely

visited areas quickly.

Each time the low-level executor terminates, the HC-explore re-

ceives its reward as follows.

r HC−explore = c 1 · 1 { target reached} + R ex (2)

The first term is a dense pseudo target-achieving reward on

whether the agent has achieved M target . It intrinsically rewards the

HC-explore for traveling to target areas. The coefficient c 1 (c 1 > 0)

controls the strength of this item. The second term is the extrinsic

rewards accumulated within the macro-action, i.e., the sequence

of primitive actions executed by the low-level executor. It acts to

remind the agent to get higher extrinsic rewards as well, which

accords with the ultimate objective and HC-exploit’s rewards.

HC-exploit aims to maximize the future extrinsic rewards.

Therefore, eliminating the first item in Eq. (2) , the HC-exploit is

trained with sole external rewards. By sharing the low-level execu-

tor with HC-explore, HC-exploit benefits from HC-explore’s macro-

state path planning capability.

We use A3C [36] to train both high-level conductors, and add

an entropy regularization term H(π
θH
H

) to boost exploration. The

regularized expected reward is:

J(πθH

H
| πθL

L
) = E

π
θH
H

| πθL
L

[∞ ∑

t=0

γ t r t+1

]
+ βH(πθH

H
| πθL

L
) , (3)

where π
θL
L

represents the policy of the low-level executor. The

strength of the entropy term is controlled by the hyper-parameter

β .

The parameters of the actor-critic algorithm contain two parts,

θH = { θμ
H

, θ v
H
} , θμ

H
for actor and θ v

H
for critic.
Please cite this article as: N. Jiang, S. Jin and C. Zhang, Hierarchical auto

task into dense reward, Neurocomputing, https://doi.org/10.1016/j.neuc
The gradient of θμ
H

and θ v
H is

 θμ
H

J(πH | πL) = ∇ θμ
H

log π
(

a t | s t ; θμ
H

)(
R H − V (s ; θ v

H)
)

+ β∇ θμ
H

H

(
π

(
s t ; θμ

H

))
(4)

 θ v
H
J(πH | πL) =

∂
(
R H − V (s ; θ v

H)
)2

∂θ v
H

, (5)

here V (s ; θ v
H) is the critic function, acting as a baseline to reduce

he variance of policy gradients, and R H is the discounted reward.

ote that the step rewards are different for two high-level conduc-

ors, as is introduced before.

.3. Low-level executor

The low-level executor (LE) learns to achieve the low-level sub-

oal g T , i.e., the action M T given by the high-level conductor, as is

hown in Fig. 2 b. It operates at a finer timescale and directly inter-

cts with the environment. At each time step, it selects a primitive

ction a t based on both g T and s t . The low-level executor termi-

ates when it reaches g T or exceeds a certain step limit. Then, it is

ime for the high-level conductor to give the next macro-state and

eset it as the new g T +1 .

The low-level executor is trained with a combination of intrin-

ic and extrinsic reward, see Eq. (6) . The coefficient α (0 < α < = 1)

ontrols the weight between them. The extrinsic reward is clipped

o the same scale (controlled by c 2) with the intrinsic reward,

hich contains a goal-reaching reward and a punishment of equal

alue if the number of low-level steps exceeds a certain limit. Also

he agent receives a tiny punishment each step to reach g T within

ewer timesteps (c 2 > 0, c 3 ≥ 0):

 LE = α ∗ [c 2 · 1 { subgoal reached} − c 2 · 1 { exceed step limit} − c 3]

+ (1 − α) · min (max (r ex , −c 2) , c 2) (6)

We use A3C and add an entropy regularization to train the low-

evel executor as well. The regularized expected reward and pa-

ameter gradients are similar to Eqs. (3) –(5) but with different re-

ards.

.4. State graph

The state graph maintains the macro-states and transitions be-

ween them. HACL constructs the state graph from the the state

equence. Based on the state graph, a curriculum sequence of tar-

et set is generated during learning.

.4.1. The update of the state graph

The state graph is represented as a dynamic undirectional graph

 t = {M t , E t } , in which the vertices M t = { M i : i = 1 ...N t } repre-

ent macro-states at time t and the edges E t = { e i j ∈ { 0 , 1 } : i =
 ...N t , j = 1 ...N t , i
 = j} represent transitions between macro-states.

f e i j = 1 , there exists a transition between macro-state M i and M j .

 t is the number of macro-states in the state graph at time t .

s the agent travels to distant places, more macro-states will be

dded into M t . Without ambiguity, we may ignore the subscript t

o simplify notations in the following paragraphs.

The state graph G is updated by the agent’s trajectories. The

xpansion of G t relates to the growth of agent’s exploration ra-

ius of the environment. As stated in Section 2.1 , each state

n the environment could be assigned to one macro-state based

n a distance measurement Dist . An accurate distance function

equires domain-specific knowledge. However, in this work, for

he sake of simplicity, each state is represented with the agent’s

osition and the euclidean distance applies in all the tasks.
matic curriculum learning: Converting a sparse reward navigation

om.2019.06.024

https://doi.org/10.1016/j.neucom.2019.06.024

N. Jiang, S. Jin and C. Zhang / Neurocomputing xxx (xxxx) xxx 5

ARTICLE IN PRESS

JID: NEUCOM [m5G; July 3, 2019;9:42]

B

t

δ

s

a

s

a

c

e

A

I

{

i

T

d

a

c

t

t

a

3

m

o

a

a

l

t

s

t

m

t

l

i

s

h

s

n

c

{

b

d

t

r

M

t

s

a

o

i

m

o

t

t

t

a

A

I

s

f

r

g

s

h

W

c

t

g

b

t

b

s

a

q

9

g

t

a

o

n

d

i

f

g

t

g

d

h

o

p

H
ut there does exist a hyper-parameter which requires exper-

ise knowledge and is crucial for learning, the threshold distance

for adding a new macro-state. If the agent discovers a state

 i , with which min j=1 ...N t
Dist(s i , M j) > δ, a new macro-state is

dded into the macro-state space M t . Otherwise, this state is as-

igned to the macro-state the most similar to it, denoted as s (m)
i

=
rg min j=1 ...N t

Dist(s i , M j) . Then the trajectory of states could be

onverted to transitions between macro-states, and corresponding

dges will be updated in E t . Algorithm 1 lists the process of updat-

lgorithm 1 UpdateG(s {0.. n } , G t , l, δ).

nput: state sequence s 0 , s 1 , . . . , s n , current state graph G t =
M t , E t } , N t = ‖M t ‖ ; clip length l, distance threshold δ.

1: for i = 0 to n − l do

2: if min j=1 , 2 , ... ,N t
dist(s i , M j) > δ then

3: add M N t into G, M N t locates at s i ’s coordinate

4: N t = N t + 1

5: end if

6: end for

7: k = arg min j=1 , 2 , ... ,N t
dist(s 0 , M j)

8: for i = 1 to n − l do

9: j = arg min j=1 , ... ,N t
dist(s i , M j)

10: e k j = e jk = 1

11: k = j

12: end for

ng G with trajectory s {0,..., n } , and Fig. 3 a shows an example update.

he agent’s trajectory is plotted with yellow line. Because of the

ead transitions in the last part of the trajectory, a fixed length

t the end of the trajectory is clipped. The existing state graph

ontains 4 macro-states, indexed from 0 to 3. Transitions between

hem are illustrated with white lines. Four new macro-states and

heir corresponding transitions are updated in G, as the blue dots

nd lines shows.

.4.2. The expansion of the target set

The state graph contains connectivity information between

acro-states, therefore is critical for the curriculum construction

f target sets. However, the macro-state space M t itself is not suit-

ble for directly functioning as the target set.

Fig. 3 b shows a state graph generated by 200 episodes of the

gent’s random trajectory. The agent explored some faraway states,

ike macro-state 17, 18, 19, 20, just by a random walk. These dis-

ant macro-states will be kept in M t but are hard for a cold-

tarted agent to reach repeatedly. Also, it is clear from Fig. 3 b

hat the amount of the macro-states is large. It is impractical to

ake all the macro-states as the target macro-states, otherwise,

he agent will improve little from each stage of curricula and the

arge amount of target set distracts the agent from each task’s orig-

nal purpose.

Considering the above two aspects, we sample a growing target

et from macro-sate space M once a while. The action space of

igh-level conductors is limited to the macro-states in the target

et as well. At each time, the target set suits the agent’s current

avigation capability. Consecutive stages of the target set forms a

urriculum sequence.

To be specific, a high-level target set T t = { M t i
: t i ∈

 1 , . . . , N t } , i = 1 , . . . , n t } is maintained, where n t is the num-

er of macro-states in the target set at time t . We define the

ifficulty function f D : S → R as the expected steps the agent

akes to travel from the initial state to state s . Thus, ˆ f D (M i)

epresents the expected number of steps from the initial state to

 i . If macro-states are selected in the order of this difficulty func-

ion, the sequence of target sets {T t } t=1 , 2 , 3 , ... , forms a curriculum

equence under f .
D

Please cite this article as: N. Jiang, S. Jin and C. Zhang, Hierarchical auto

task into dense reward, Neurocomputing, https://doi.org/10.1016/j.neuc
However, there leaves a question: how does HACL estimate f D (s)

nd

ˆ f D (M i) ? A strikingly simple way is to select macro-states in

rder of their indexes. In fact, the exact value of f D (s) and

ˆ f D (M i)

s neither required nor estimated, but the order of ˆ f D (M i) | i =1 , ... ,N t
atters, as the definition of curriculum sequence is defined by the

rder of the difficulty level of the macro-states. The good news is

hat, the macro-states are added into G with an index in order with

heir trajectories. In other words, for any macro-state with index i ,

he macro-states on the sure way from initial state to it will have

n index smaller than i .

lgorithm 2 ExpandT(K ; G t , T t).
nput: current state graph G t = {M t , E t } , N t = ‖M t ‖ , current target

et T t , n t = ‖T t ‖ , adding count K.

1: CoveredSet C = ∅
2: for M t i

in T t do

3: add M t i
and its neighbours into C

4: end for

5: for k = 1 to K do

6: for i = 1 to N t do

7: if i / ∈ C then

8: add M i into target set T t
9: n t = n t + 1

10: add M i and its neighbours into C

11: break

12: end if

13: end for

14: end for

During training, a high-level target M target is randomly selected

rom last n macro-states in T t for HC-explore. When the agent

eaches the following condition: successfully achieving these tar-

et macro-states with a probability(p) or making high-level deci-

ions for a sufficient number(D) of times, K new macro-states with

igher difficulty level will be sampled from M t and added into T t .
Algorithm 2 demonstrates the expansion of the target set.

hen the agent learns to achieve the target macro-states in the

urrent target set, we assume all the neighbouring macro-states of

hese target macro-states are easily covered by the agent’s navi-

ation capability. So all the existing macro-states and their neigh-

ours are marked as covered, and from the other macro-states in

he state graph, HACL selects the one with the smallest index to

e added into the target set. Fig. 2 shows an example G and T . If

tarting from two macro-states in T 0 , and two new macro-states

re added into T when expanding it, the generated curriculum se-

uence of T will be {1, 2}, {1, 2, 5, 9}, {1, 2, 5, 9, 12, 17}, {1, 2, 5,

, 12, 17, 19}.

We must emphasize that, we only use the state graph to (1)

enerate the curriculum sequence {T t } t=1 , 2 , 3 , ... , (2) make use of

he saved location of macro-states to give the intrinsic target-

chieving and goal-reaching rewards. An existing work makes uses

f A

∗ algorithm to do high-level path planning [37] . HACL does

ot use the state graph as a map, but use the high-level con-

uctor to learn the macro-state plan. Because of the unavoidable

mperfection of distance function, G could be noisy and contains

alse transitions of macro-states. Fig. 2 c shows an example state-

raph with a misleading macro-state transition. The agent needs

o travel from macro-state M 0 to the target M 5 . The graph would

ive the shortest path: M 0 → M 2 → M 4 → M 5 , which is infeasible

ue to the misleading transition from M 0 to M 2 . However, if the

igh-level conductor learns through trial and error, from the previ-

us target-achieving reward, it would learn to give another feasible

ath through macro-state M 1 and M 3 .

The whole learning process is tabulated in Algorithm 3 , with

C-explore as the high-level conductor. As for the HC-exploit, it
matic curriculum learning: Converting a sparse reward navigation

om.2019.06.024

https://doi.org/10.1016/j.neucom.2019.06.024

6 N. Jiang, S. Jin and C. Zhang / Neurocomputing xxx (xxxx) xxx

ARTICLE IN PRESS

JID: NEUCOM [m5G; July 3, 2019;9:42]

Algorithm 3 Training process of HACL (use HC-explore as high-

level conductor).

Input: threshold δ, clip length l, start number of macro-states m 1 ,

add number of macro-states K, low-level step limit s

1: build initial G from random trajectories

2: T = ∅
3: ExpandT(m 1 ; G, T)
4: i = 0

5: while True do

6: sample M target from last n macro-states in T
7: while M target not achieved and not terminate do

8: HC-explore gives M T

9: set low-level subgoal g T = M T

10: R ex = 0

11: t = 0

12: the agents stays at s 0
13: while g T not achieved and t < s and not terminated do

14: LE takes an action

15: t = t + 1

16: the agent moves to new state s t , and receives r ex

17: R ex = R ex + r ex

18: Build(s { 0 ..t} ;G, l, δ)

19: end while

20: train LE with the reward in Eq. (6)

21: i = i + 1

22: end while

23: train the HC-explore with reward in Eq. (2)

24: if terminated and reach the condition of expanding T then

25: ExpandT(K; G, T)
26: end if

27: end while

Fig. 4. Three Environments. (a) Chain: A long-horizon stochastic chain that re-

quires massive exploration. (Dashed arrow: action “Right” moves the agent left or

right randomly at 50%. Red arrow: action “Left” moves the agent left definitely.)

(b) Maze15: size 15 x 15. (c) Maze20: size 20x20 (d) MR: The first room of Mon-

tezuma’s Revenge. Some feasible routes are illustrated with yellow arrows, and the

red ones are dead movements.

I

e

e

a

t

c

r

4

a

e

t

n

D

m

t

e

p

4

d

f

a

a

m

4

t

o

m

d

g

m

w

t

t

t

just ignores the function of M target and removes the pseudo target-

achieving reward. In the testing phase, only HC-exploit will be kept

and guide the agent to get higher external rewards in the environ-

ment.

4. Experiments

In this section, we evaluate HACL on three difficult sparse re-

ward environments: A long-horizon chain, grid maze, and Atari

game Montezuma’s Revenge.

In the first environment, the state graph is clean and perfect.

Because of the walls in maze, there exist many false transitions in

the state graph of this environment. The last one, Atari game Mon-

tezuma’s Revenge, is a notoriously challenging sparse reward game.

Many existing reinforcement learning algorithms fail to learn a

meaningful policy [1,7,14,15] , and even for those who achieve good

results, either require expert demonstrations or a huge demand

for training steps [16,18,23,24] . Compared to existing works, HACL

successfully learns to get 2500 points within 33 million training

frames without the aid of demonstrations. Moreover since this en-

vironment is full of traps, the success on this experiment confirm

that despite the state graph contains misleading transitions, HACL

still robustly learns to perform well.

4.1. Environments

4.1.1. Long-horizon chain

Following [21] , we use a stochastic chain, but with longer chain

length, to demonstrate the effectiveness of HACL in solving sparse

reward problems. As shown in Fig. 4 , the agent starts at s 1 and ter-

minates at s 0 . Action “Left” moves the agent left deterministically,

but action “Right” moves the agent left or right randomly at 50%.
Please cite this article as: N. Jiang, S. Jin and C. Zhang, Hierarchical auto

task into dense reward, Neurocomputing, https://doi.org/10.1016/j.neuc
f the agent has visited s N , the rightmost state, the reward of the

pisode is 10 otherwise 0.01. Note that the trivial reward 0.01 is

asy to get, but traversing the long chain and returning demands

 much longer action sequence, considering the random nature of

he “Right” action. Different from the settings in [21] , we scale the

hain length from 6 to 17, adding much more difficulty.

Obviously, the optimal policy in this task is to head right till the

ightmost state s n and then step back to the terminal state s 0 .

.1.2. Grid maze

The grid maze environment is a large maze that contains far-

way non-zero rewards. Fig. 4 b and 4 c shows two mazes of differ-

nt sizes. The agent starts from the grid in red and terminates at

he grid in blue. At each time step the agent moves to one of its

eighboring cells by choosing among the discrete action space {UP,

OWN, LEFT, RIGHT}. If the agent knocks into the wall, no move-

ent will be made. The agent gets zero rewards unless it reaches

he terminal state. Given the large size of the maze, the reward is

xtremely sparse.

For this environment, the optimal policy is to walk along the

ath from the initial state to the terminal state.

.1.3. Montezuma’s revenge

Montezuma’s Revenge (later abbreviated as MR) is a notoriously

ifficult game. In this game, the agent must navigate through dif-

erent rooms to collect treasures. This environment is full of traps

nd pitfalls: falling from the platform will make the agent lose

 life (Fig. 4 d shows some dead movements in red and feasible

ovements in yellow).

.2. Experimental settings

We compare HACL with the following baseline algorithms:

wo hierarchical reinforcement learning framework, HRL [21] and

ption-critic (later denoted as OC) [20] , and another two reinforce-

ent learning algorithms, DQN [1] and A3C [36] . HRL manually

efined several landmarks in the first room of MR as the sub-

oals. But HACL makes spatial abstractions, automatically explores

ore macro-states and meanwhile generates the curricula. Like-

ise, option-critic does not require pre-defined hierarchy. It end-

o-end learns the policies and terminations of options, as well as

he policy over options. Also, we did ablative experiments to inves-

igate the advantages of several innovations in HACL.
matic curriculum learning: Converting a sparse reward navigation

om.2019.06.024

https://doi.org/10.1016/j.neucom.2019.06.024

N. Jiang, S. Jin and C. Zhang / Neurocomputing xxx (xxxx) xxx 7

ARTICLE IN PRESS

JID: NEUCOM [m5G; July 3, 2019;9:42]

Table 1

The number of frames each algorithm takes to perceive the optimal policy or get 2500 points in MR. The statistics are

averaged over five random runs. The variants of HACL are introduced in Section 4.4 . Note that, HACL ∗-NoCL requires

a predefined hierarchical structure. For fair comparison, we select a good state graph, generated by one HACL trial to

provide the hierarchy. This trial is denoted as HACL ∗ . The chosen state graphs are with good quality (comparably fewer

false transitions).

A3C DQN HRL Option-Critic HACL-NoAbs HACL-No2hl HACL HACL ∗ HACL ∗-NoCL

Chain inf 5M inf 7M 7M inf

Maze15 40M + 13.1M 6.8M 6.4M 5.9M 7.1M

Maze20 60M + 16.3M 15.2M 12.2M 14.8M

MR inf 46.4M 33M 23.4M inf

Table 2

Performances of HACL and some state-of-the-art algorithms: HACL achieves comparable performance but with much fewer training frames. For HACL, its

scores and frames are averaged over 5 random runs. Statistics of other algorithms are quoted from their original paper. Note that FuN’s original paper [38]

did not mention the average score. Its 2600 score is one best run. HIRL [18] gets 400 score with only 4M training frames. However, it utilizes imitation

learning of expert demonstrations. Due to the space limit, H-No2hl and H-NoCL is short for HACL-No2hl and HACL-NoCL, respectively.

Non-hierarchical Hierarchical

DQN [1] A3C [36] R [15] PC [23] PCn [24] Ape-X [16] FuN

∗ [38] OC [20] HIRL ∗ [18] HACL H-No2hl H-NoCL

Score 0 53 154 273.7 3705 2500 2600 0 400 2500 2500 0

Frames 200M 200M 200M 200M 150M 22.8B - 200M 4M 33M 46.4M 60M

n

d

4

t

o

t

i

s

i

i

r

g

l

i

t

H

a

e

4

t

r

l

f

o

p

t

t

W

t

t

t

r

4

g

t

t

Fig. 5. (a) Four key points in game Montezuma’s Revenge (b) the success rates of

reaching four points at different training steps.

a

t

m

h

n

o
More experimental settings including the hyper-parameters,

eural network architectures, state preprocessing in MR are intro-

uced in Appendix B .

.3. Performance

Compared to baseline algorithms, HACL and its variants achieve

he best performance both in sample efficiency and final rewards

n the three sparse reward tasks. Table 1 shows the number of

raining frames each algorithm take to perceive the optimal policy

n the first two tasks. As to the challenging environment MR, it

hows the training frames required to get 2500 points (This level

s difficult).

For the long-horizon chain, when training from a random start,

t is a remote possibility for the agent to keep heading to the

ight-most state. Thus, we observed that the baseline algorithms

et stuck at the local optimal policy (directly move towards the

eft-most state to get trivial 0.01 reward) early and more train-

ng frames even strengthen this sub-optimal policy. So we marked

raining frames for these algorithms as inf in Table 1 . However,

ACL continuously provides dense pseudo rewards by the target-

chieving reward, and accordingly, the agent itself is incentive

nough to travel to the right-most state.

For the two maze tasks, we limit the total training frames to

0M and 60M, respectively. It can be easily seen from Fig. 4 that

he agent needs to take nearly one hundred steps to the faraway

eward state. Still, without informative exploration, all of the base-

ine algorithms fail to learn within the step limit.

On the sparse reward game, Montezuma’s Revenge, Fig. 5 shows

our key points of getting extrinsic rewards and the success rate

f reaching these points at different training frames. The four key

oints are: climbing down two ladders to the ground, collecting

he key(100 points), using the key to open the door(300 points),

ravelling faraway to the room bellow to get the sword(100 points).

ithin only 9M training steps, the agent learns to reach the first

hree points to get 400 points. However, as is shown in Fig. 5 a,

he long-horizon poses a great challenge to the agent to travel to

he room below. It demands approximately 20M training steps to

each the sword. So a few existing works [18,21] get stuck at the

00 points. But in HACL, the dense target-achieving rewards and

oal-reaching rewards progressively encourage the agent to travel

o the room below to get the sword and more points.

Table 2 compares performances of HACL and some state-of-

he-art algorithms on the Atari game Montezuma’s Revenge. HACL
Please cite this article as: N. Jiang, S. Jin and C. Zhang, Hierarchical auto

task into dense reward, Neurocomputing, https://doi.org/10.1016/j.neuc
chieves 2500 points within 33 million training steps. Ape-X,

hough obtaining the same score, requires orders of magnitude

ore training steps than HACL. Even though the PCn learns to get

igher rewards up to roughly 3700 points, they demand a huge

umber of training frames. Note that the score of HACL is averaged

ver 5 random runs. Its performance is stable across separate tri-
matic curriculum learning: Converting a sparse reward navigation

om.2019.06.024

https://doi.org/10.1016/j.neucom.2019.06.024

8 N. Jiang, S. Jin and C. Zhang / Neurocomputing xxx (xxxx) xxx

ARTICLE IN PRESS

JID: NEUCOM [m5G; July 3, 2019;9:42]

Fig. 6. visualization of the learning process of HACL-NoAbs, trained on a 17-state chain. Each orange block represents a timestamp: The training frames and average test

reward are shown in the upper-left corner of each block. The square shows actor values of HC-exploit: given the current macro-state M T , to get more extrinsic rewards, the

action probability of the next macro-state M T+1 . The rectangle visualizes the actor values of low-level executors: given different subgoals, at each state, the probability of

moving right. Brighter color represents higher values.

t

s

t

t

s

C

t

d

g

e

v

t

s

w

f

v

g

m

l

s

t

7

f

a

s

s

s

4

c

H

w

u

H

e

t

e

t

m

e

w

t
als. Due to constraints of computing time and resources, we could

not train HACL with more than 60M training steps.

We compare HACL with its variants in the following ablative

analysis.

4.4. Ablative analysis

To investigate the several advantages of HACL: (1) spatial-

temporal abstraction (2) curriculum setting (3) introduction of HC-

explore, we study the following variants of HACL: HACL-NoAbs,

HACL-NoCL, HACL-No2hl, and HACL with a variable number of HC-

explore workers. HACL-NoAbs makes each state as a macro-state,

like the settings in the long-horizon chain experiment in [21] .

HACL-NoCL does not generate target sets in a curriculum fashion

but makes use of predefined subgoals. Manually setting subgoals

and building hierarchy on this in advance is impossible when the

agent needs to explore unknown environments. However, to inves-

tigate whether curriculum learning could accelerate the learning

process, we employ some good state graphs (fewer false transi-

tions) generated by HACL to provide the hierarchy. Also, we vary

the number of HC-explore asynchronous threads in HACL to inves-

tigate the benefits of introducing HC-explore. If no HC-explores is

used for training, the algorithm is denoted HACL-No2hl.

4.4.1. Macro-state abstraction

HACL-NoAbs is equivalent to set δ = 0 in HACL, which means

any two different states will be assigned to two different macro-

states. The good result of HACL-NoAbs on the long-horizon chain

shows HACL-NoAbs performs well when there are not too many

states. In Chain, only 17 states exist in this MDP, modeling each

state as a macro-state is feasible. Also because of the random na-

ture of right action, abstracting more than one states into one

macro-state poses challenge when navigating to those macro-states

on the right. Hence, the macro-state abstraction does not function

well in this task. While in Maze15 and Maze20, as the number of

states increases, HACL-NoAbs consumes twice the number of train-

ing steps in Maze15, but fails in Maze20. As for MR, it is impossible

to try HACL-NoAbs with numerous states. Therefore, this indicates

that macro-state abstraction is critical for efficient exploration, es-

pecially for large state space.

4.4.2. Curriculum setting

HACL-NoCL makes use of predefined macro-states as subgoals,

but no curriculum learning is employed. Table 1 compares HACL ∗-

NoCL with HACL ∗. For fair comparison, the state graph generated

by one HACL trial (this trial is denoted as HACL ∗) is selected to pro-

vide HACL ∗-NoCL with hierarchy. In chain, it is direct that without
Please cite this article as: N. Jiang, S. Jin and C. Zhang, Hierarchical auto

task into dense reward, Neurocomputing, https://doi.org/10.1016/j.neuc
he curriculum training, the high-level conductor is prune to get

tuck at the shorted-sighted local optimal policy: move left to get

he 0.01 reward. For two maze environments, HACL ∗-NoCL learns

he optimal policy but with more training steps than HACL ∗.

To fully understand the effect of curriculum learning, Fig. 6 vi-

ualizes tabular values of models at three different timesteps in

hain. It clearly shows the evolution of HACL’s learning process:

he agent continuously explores further, and the values are up-

ated accordingly. At last, the agent “understands” it needs to mi-

rate to the rightmost state to get the most reward. The low-level

xecutor gives action “Right” if the subgoal is on its right, and

ice versa. Fig. 6 demonstrates that, though the agent is prone

o move left, HC-explore encourages the agent to explore further

tates gradually and finally perceive the optimal policy.

For MR, Table 2 shows HACL is able to obtain 2500 points

ithin 33M frames, while HACL ∗-NoCL, with a better state graph,

ails to get even 100 points within 60M training frames. The pre-

ious work [21] achieves 400 points with some predefined sub-

oals, which is similar to HACL ∗-NoCL. The reason why the perfor-

ance of HACL ∗-NoCL is worse than that of [21] is possibly the

arge high-level action space in HACL ∗-NoCL. As it employs the full

tate graph generated in HACL ∗, the number of the high-level ac-

ions is much more than that in [21] , which only manually defines

 macro-states in the first room of MR.

Some false transitions in the state graph of Maze and MR do af-

ect the curriculum sequence of the target set. But Section 5.1 will

nalyze that the consecutive stages of T still forms a curriculum

equence. Also, Section 5.3 argues that the imperfectness of the

tate graph will be remedied by high-level conductors and HACL

till works robustly.

.4.3. Functionality of two high-level conductors

Further, to demonstrate that the introduction of HC-explore ac-

elerates training, we investigate the influence of the number of

C-explore training threads. The total number of asynchronous

orkers in A3C are maintained to be 6 in Chain and Maze. When

sing n workers for HC-explore, 6 − n workers will be trained with

C-exploit.

Fig. 7 illustrates the relationship between the number of HC-

xplore training workers and the total training steps HACL takes

o converge to the optimal policy. The algorithm without the HC-

xplore is denoted as HACL-No2hl in Table 1 . It is reasonable

hat the best choice of the number of HC-explore workers is a

edium number, since replacing an HC-exploit worker to HC-

xplore marginally gives the agent a denser target-achieving re-

ard, reducing the training frames, but with more HC-explore

raining workers, this marginal benefit gradually decreases and the
matic curriculum learning: Converting a sparse reward navigation

om.2019.06.024

https://doi.org/10.1016/j.neucom.2019.06.024

N. Jiang, S. Jin and C. Zhang / Neurocomputing xxx (xxxx) xxx 9

ARTICLE IN PRESS

JID: NEUCOM [m5G; July 3, 2019;9:42]

Fig. 7. The performance of HACL versus the number of HC-explore workers.

o

s

9

a

n

4

t

l

t

5

t

s

w

a

t

T

h

t

t

i

f

H

5

s

b

s

m

m

s

t

m

s

a

I

e

f

g

m

w

l

f

i

t

o

c

m

m

s

t

a

t

c

i

W

s

f

F

F

t

riginal objective of getting more extrinsic rewards may be ob-

cured.

The result is the same to that in MR. HACL uses 10 workers,

 for HC-exploit and 1 for HC-explore, whereas HACL-No2hl uses

ll the 10 workers with HC-exploit. As shown in Fig. 5 a, the agent

eeds to take a much longer way to obtain the sword after getting

00 scores when opening the door. Therefore, without the dense

arget achieving reward provided by HC-explore, HACL-No2hl take

onger to learn to get further scores due to the sparse reward na-

ure of this game.

. Analysis

During learning, the state graph stores the hierarchical struc-

ure of macro-state abstraction and generates a sequence of target

ets. Therefore, it functions as a key role in HACL. In this section,

e will first argue that: the generated sequence of target sets is

lways a curriculum sequence, even facing the false transitions in

he state graph caused by the inaccuracy of the distance function.

hen, we will discuss the principle in choosing a domain-specific

yper-parameter, the macro-state distance threshold δ, which is

he root cause of false transitions. Finally, we give some arguments
ig. 8. A map and three state graph sketches. The corresponding target set is marked wit

ig. 8 a. Some false transitions exist in Fig. 8 c and 8 d. The macro-states are added into th

he target set in Fig. 8 d is {1}, {1, 3}, {1, 3, 5}, {1, 3, 5, 6}, {1, 3, 5, 6, 11} if the adding cou

Please cite this article as: N. Jiang, S. Jin and C. Zhang, Hierarchical auto

task into dense reward, Neurocomputing, https://doi.org/10.1016/j.neuc
hat in spite of the noisy state graph and flawed high-level plans

n cold-start period, the curriculum setting and hierarchical rein-

orcement learning setting mitigates the negative effects of them.

ACL still works robustly.

.1. Curriculum sequence

The generated sequence of target sets is always a curriculum

equence, even with imperfect distance function. We will explain

y Fig. 8 , which plots several state graph sketches. More real

tate graphs in Maze and MR are listed in Fig. 9 . Fig. 8 a shows a

ap with true transitions between landmark positions. These land-

arks are denoted with A, B, C,..., K, and each induces a macro-

tate when G is updated by the agent’s trajectory. We denote

heir macro-state indexes as I A , I B , . . . , I K . The initial macro-state is

arked with index 0. Algorithm 1 shows the order of the macro-

tate indexes accords with that of the agent’s trajectory. Since the

gent must visit A, B, C, D, E, F before G , it is guaranteed that

 A < I B < I C < I D < I E < I F < I G , likewise I H < I I , I J < I K . Therefore, when

xpanding the target set, all of the macro-states on the sure way

rom M 0 to it must have been considered to be added into T , re-

ardless of the false transitions. Fig. 8 b shows an example of these

acro-state indexes in the state graph. Their indexes are marked

ith gray numbers except the macro-states in T are marked with

arge dots and red numbers. Fig. 8 b is a perfect state graph without

alse transitions, while Fig. 8 c and 8 d adds false transitions which

s infeasible in practice but caused by the inaccuracy of the dis-

ance function. In all three state graphs, regardless of the existence

f the false transitions, the sequence of the target set is always a

urriculum sequence: When expanding the target set with a new

acro-state i , the macro-states on the sure way from M 0 to M i

ust have been considered to be added into T .
However, how does the false transitions affect the curriculum

equence of T ? It becomes clear if comparing the difference be-

ween Fig. 8 b, 8 c, 8 d. Algorithm 2 shows, a macro-state will be

dded into the target set only if it is not in the covered set of

he existing target set. False transitions bring “blindly optimistic”

overed set. Therefore, in Fig. 8 c, M 9 (E) is expelled from adding

nto T , and the difficulty gap between M 3 (C) and M 10 (F) enlarges.

ith more false transitions in Fig. 8 d, both M 9 (E) and M 10 (F) are

kipped and the gap further enlarges. In extreme cases, with many

alse transitions, the difficulty gap between consecutive stages of
h large dots and red numbers. Fig. 8 b is a perfect state graph of the actual map in

e target set according to their indexes. E.g., the generated curriculum sequence of

nt K in Algorithm 2 is 1.

matic curriculum learning: Converting a sparse reward navigation

om.2019.06.024

https://doi.org/10.1016/j.neucom.2019.06.024

10 N. Jiang, S. Jin and C. Zhang / Neurocomputing xxx (xxxx) xxx

ARTICLE IN PRESS

JID: NEUCOM [m5G; July 3, 2019;9:42]

Table 3

The number of frames each HACL- δ takes to learn to get 2500 points

in MR. ‖T ‖ is the number of macro-states in T in the end of the train-

ing. The statistics are averaged by five random runs.

δ 16 18 20 22 24

training frames(M) 40.82 46.58 33.00 44.35 60M +

‖T ‖ 28.6 25.8 22.2 20 19

fl

h

a

t

c

h

l

t

a

h

i

T

p

h

a

o

t

r

e

a

i

p

fi

t

R

t

w

p

6

r

t

r

p

p

r
the target set will be so huge that the benefit of curriculum learn-

ing diminishes.

5.2. Guides in choosing the threshold δ

HACL deals with the navigation-related tasks, so we simply

choose the euclidean distance of the agent positions as the dis-

tance function. It could be applied in all the navigation-related

tasks, as long as the agent’s position is available. But there does

exist a hyper-parameter which requires expertise knowledge and

is crucial for learning, the distance threshold δ for adding a new

macro-state.

Next, we talk about the principle in choosing this threshold and

qualify the effect introduced by different choices of δ.

The hyper-parameter δ influences the construction of the state

graph. Fig. 9 draws multiple state graphs and their correspond-

ing target sets under different δ. Some false transitions are marked

with red lines and crosses.

It is clear from Fig. 9 that with small δ, there will be more

macro-states, but negligible false transitions. In this situation, ben-

efiting from a high-quality state-graph and mild growth between

consecutive stages of the target set, it is easier to train low-level

policy at each curriculum stage. However, it brings some difficulty

on the high-level plan, for the large amount of macro-states, and

the learning process is quite slow. On the other hand, with large

δ, the agent obtains more growth on the scope of navigation when

progressing through each curriculum stage of T . Both G and T will

be concise, reducing the difficulty on the the high-level plan. How-

ever, in this situation, more false transitions emerges and lead to

more aggressive covered set when expanding T . Therefore, as an-

alyzed in the previous section, large δ makes the difficulty level

between consecutive stages of T grows too fast. The low-level ex-

ecutor may fail to learn due the long horizon, in which case the

benefits of the curriculum learning gradually diminishes.

We suggest the following steps in choosing δ. First generate

several state graphs and their corresponding target sets. Fig. 9 a and

9 b shows those of Maze15 and MR respectively. These graphs are

obtained without much effort, just by 200 episodes of the agent’s

random walk. Then based on the analysis before, balancing the

number of false transitions and high-level macro-states, a feasible

range of δ could be determined. Further, experiments under differ-

ent δ could be conducted to find the optimal choice of δ, or simply

choose a moderate one.

From Fig. 9 b, a feasible range of δ could be 16, 18, 20, 22, 24.

We conducted experiments with all of them. HACL works robustly

with δ = 16 , 18 , 20 , 22 , being able to learn to obtain 2500 points

within 60M training frames, except for δ = 24 . The training frames

required for obtaining 2500 points and the number of macro-states

in T in the end of the training are tabulated in Table 3 . All the

statistics are averaged under five random runs. The result confirms

our analysis before: larger δ makes the agent fail to navigate to

positions farway and smaller δ brings more macro-states therefore

posing difficulty on high-level plan. A moderate δ gives the best

performance.

5.3. The robustness of HACL

Since there exist false transitions between macro-states, it is

reasonable to question how the low-level agent behaves under the
Please cite this article as: N. Jiang, S. Jin and C. Zhang, Hierarchical auto

task into dense reward, Neurocomputing, https://doi.org/10.1016/j.neuc
awed high-level policy. Will the imperfect state graph and flawed

igh-level plan direct the whole learning process to collapse?

As to the imperfectness of the state graph, apart from its neg-

tive effect on the curriculum sequence, it has nothing to do with

he high-level plan. As emphasized in Section 3.4 , the high-level

onductors learns by its intrinsic target-achieving reward to do

igh-level plans. This target-achieving reward teaches the high-

evel conductor, instead of the state graph.

Drawing on recursive proof in mathematics, we give a quali-

ative analysis that the hierarchical reinforcement learning setting

nd curriculum setting help mitigate the negative effects of flawed

igh-level policy, therefore make HACL more robust.

First, we must assume that the low-level learning algorithm

s able to learn to reach places not too far, say within several δ.

his is not a hard requirement, and it is reasonable to make such

remise as we are marginally analyzing the effect of the flawed

igh-level plan. It could be achieved by choosing better low-level

lgorithm or smaller threshold δ. Now, we argue that, with the aid

f hierarchical reinforcement learning setting and curriculum set-

ing:

1. When in the stage T 0 , even working with a random high-level

policy, the low-level agent could still manage to fulfill the con-

dition required to progress to T 1 : be able to reach the macro-

states in T 0 with a predefined probability. Then the high-level

policy is easy to learn. This process is shown in Fig. 10 a. This ar-

gument is apparently established given the assumption on the

low-level capability.

2. If the agent successfully progresses from T n −1 to T n , it is nat-

ural to assume the whole agent policy could give decent high-

level plans and low-level decisions to reach macro-states in the

covered set of T n −1 . Then even the high-level agent is “partially

random” with respective to the newly added macro-states, the

low-level agent could still reach the newly added macro-states

from the nearby covered places. The knowledge of navigating

from the initial state to the covered state is reused, like the

John’s example in Introduction. In other words, this time, the

newly added macro-states are no longer far away from the

agent’s initial position. The improved low-level policy in turn

helps the training of high-level plan. Then, HACL manages to

fulfill the condition required to progress to T n +1 : be able to

reach the macro-states in T n with a predefined probability. This

process is shown in Fig. 10 b.

To evidence the arguments above, we modified HACL with a

andom high-level conductor, denoted as HACL-random. We must

mphasize that, HACL-random differs from the settings in the

bove two arguments, in which the high-level plan is only flawed

n the cold-start period but improves later with the help of an im-

roved low-level policy. The result on the Maze15 and 20 con-

rms the arguments: the agent gradually learns to reach all of

he macro-states in the state graph. As to the hard Montezuma’s

evenge, we made four trials of HACL-random. Surprisingly, for

wice, the agent is able to obtain the faraway sword (see Fig. 5 a)

ithin 60M training frames, which is the key to obtain 2500

oints.

. Related works

The proposed HACL lies at the intersection between hierarchical

einforcement learning and curriculum learning. Also, the introduc-

ion of pseudo target-achieving reward and goal-reaching reward

elates to the works on intrinsic motivation.

Hierarchical reinforcement learning decomposes a complex

roblem into some interrelated sub-problems. By exploiting tem-

oral and spatial abstractions, HRL is often used to address sparse

eward tasks [11,18,21,25,27,28] . Some of these works require the
matic curriculum learning: Converting a sparse reward navigation

om.2019.06.024

https://doi.org/10.1016/j.neucom.2019.06.024

N. Jiang, S. Jin and C. Zhang / Neurocomputing xxx (xxxx) xxx 11

ARTICLE IN PRESS

JID: NEUCOM [m5G; July 3, 2019;9:42]

Fig. 9. Randomly generated state graphs and their corresponding target sets. Dotted lines are the transitions. Macro-states are indexed with gray or red numbers. The target

set is marked with large dots and red numbers.

Please cite this article as: N. Jiang, S. Jin and C. Zhang, Hierarchical automatic curriculum learning: Converting a sparse reward navigation

task into dense reward, Neurocomputing, https://doi.org/10.1016/j.neucom.2019.06.024

https://doi.org/10.1016/j.neucom.2019.06.024

12 N. Jiang, S. Jin and C. Zhang / Neurocomputing xxx (xxxx) xxx

ARTICLE IN PRESS

JID: NEUCOM [m5G; July 3, 2019;9:42]

Fig. 10. Progress of HACL. Large dots represent the target set.

p

f

c

t

k

f

b

H

e

e

g

s

t

f

t

k

t

C

A

6

L

A

A

A

W

l

l

t

t

w

s

l

i

c

n

t

t

t

n

i

e

a

c

k

l

a

l
decomposable structure of the environment or manually designed

subgoals, such that downstream tasks could be employed to learn

skills. With the aid of the pre-defined hierarchy, some basic skills

are trained in advance and reused in later complex tasks [21,27,28] .

Some works do not require the decomposable structure or seek to

discover the hierarchy automatically [11,18,20,38–42] . Gupta et al.

[11] is the most similar to our work. It learns the confidence and

belief about the environment, like the state graph in HACL, and

gives hierarchical planning based on it. The key difference is that

[11] learns confidence and belief about the environment while we

build the state graph directly from the agent’s trajectories. More-

over, its hierarchical planning is based on the value iteration net-

work, while we learn the high-level and low-level policies by trial

and error.

Algorithms with intrinsic motivation aim to encourage the

agent to explore novel places [22–26,43] . These works design par-

ticular measurements to reflect the agent’s curiosity of each state.

This curiosity measurement then provides qualitative guidance for

exploration. Also, there exist a few works making use of both HRL

and intrinsic motivations to address the sparse reward problem

[21,25] .

Employing curriculum learning has been studied in some rein-

forcement learning tasks [10,30,32,44,45] . However, most of these

works make use of handcrafted curricula. Further, [32–34,43] stud-

ied automatic curriculum generation in reinforcement learning.

[34] addresses the sparse reward setting as well. It uses a Goal

GAN to generate a curriculum sequence of goals which is similar to

HACL. One difference is that HACL makes hierarchical actions. Also,

[34] fails on the notoriously sparse reward game Montezuma’s Re-

venge. 1

7. Conclusion and future work

We have presented HACL, a hierarchical based automatic cur-

riculum learning framework, and demonstrated its ability to alle-

viate the sparse reward difficulty. Our HACL framework consists

of a two-level hierarchical decision model and a state graph for

automatic curriculum learning. By employing curriculum learning,

the sparse reward navigation challenge is alleviated by the dense

target-achieving reward and goal-reaching reward. Moreover, un-

like some existing works predefining subgoals in advance, the con-

struction of curricula (the sequence of target sets) is fully auto-

mated, which automatically expands with the agent’s capability.

Combining the advantages of hierarchical reinforcement learning

and curriculum learning, our method enables the agent to master

three sparse reward tasks with much less training frame.
1 We modified the released code https://github.com/florensacc/rllab-curriculum

to test its performance on Montezuma’s Revenge.

t

l

t

m

Please cite this article as: N. Jiang, S. Jin and C. Zhang, Hierarchical auto

task into dense reward, Neurocomputing, https://doi.org/10.1016/j.neuc
One defect of the current work is that we only employ a sim-

le spatial distance between different places. This choice brings

alse transitions in the state graph and affects the quality of the

urriculum sequence. The hierarchical setting and curriculum set-

ing of HACL help mitigate its negative effects. But more domain

nowledge could be introduced to design a more accurate distance

unction. As well, efficient incorporation of domain knowledge is

eneficial for unknown challenging problems.

In this paper, we only investigate the navigation problem.

ence the state graph relates to the spatial information. How-

ver, the idea of automatic curriculum learning could be further

xtended to more general settings, e.g., macro-states in the state

raph could present the difficulty level of the task, and the expan-

ion of the target set indicates the increasing proficiency level of

he agent on the task. Multiple directions could be studied in the

uture, like generalizing HACL to more general problems, learning

he distance metric of macro-states, better incorporation of domain

nowledge in the state graph construction, and the dynamic size of

hreshold δ.

onflict of interest

None.

cknowledgement

This work is supported by NSFC (Grant Nos. 61876095 and

1751308), and the Beijing Natural Science Foundation (Grant No.

172037).

ppendix A. Algorithm of HACL

The training process of the whole HACL is tabulated in

lgorithm 3 . The hyper-parameters are introduced in Section 3 .

ppendix B. Experimental settings

Hyper-parameters and training settings are listed in Table B.4 .

e keep most of the hyper-parameters the same, except those re-

ated to specific characteristics of the environment, like the low-

evel step limit s , the hyper-parameters about the state graph and

he target set. We train HACL, with A3C using shared Adam op-

imizer with N workers, where N refers to the number of total

orkers. Other baseline algorithms are trained using their default

ettings, except that the number of workers used in A3C and the

earning rates for all the baseline algorithms are the same to that

n HACL. In HACL, some workers use HC-exploit as the high-level

onductor, while the others use HC-explore. The impact of the

umber of HC-explore workers is introduced in Section 4.4 . In all

he three environments, we use the euclidean distance as the dis-

ance function. We obtain the global position of the agent’s state

o get such distance. The hyperparameter D refers to the maximum

umber of high-level decisions for each curriculum phase, which is

ntroduced in Section 3.4.2 . For Chain, we make it increase as an

xponential of the current phase number i. As to Maze, which is

n easy task, there is no need to set such a threshhold number.

Fig. B.11 shows the architecture of models for each tasks.

onv(c, w, h, s) means a convolution layer with channel size c ,

ernel w × h , and stride s. maxpool(w, h) represents a max-pooling

ayer with size w × h . A nonlinear relu function is followed after

ll the convolution and linear layers, except the final output linear

ayer. Emb(M) is an embedding layer with output size M . The

arget input of the high-level conductor and subgoal input of the

ow-level executor are all one-hot vectors. In Fig. B.11 , M refers

o #total_macros in Table B.4 and Algorithm 3 . The target set of

acro-states is also the action space of the high-level conductor.
matic curriculum learning: Converting a sparse reward navigation

om.2019.06.024

https://github.com/florensacc/rllab-curriculum
https://doi.org/10.13039/501100001809
https://doi.org/10.1016/j.neucom.2019.06.024

N. Jiang, S. Jin and C. Zhang / Neurocomputing xxx (xxxx) xxx 13

ARTICLE IN PRESS

JID: NEUCOM [m5G; July 3, 2019;9:42]

Fig. B.11. Architectures of models in three tasks. M refers to the #total_macros in

Table B.4 .

H

H

n

l

o

c

fi

n

B

v

b

r

I

e

Table B.4

Hyper-parameters of different tasks.

hyper-parameter Chain Maze15 Maze20 MR

threshold δ 0
√

2 20

clip length l 0 0 30

m 1 2 6 6

K 1 3 2

n 2 6 6

p 0.2 0.5 0.4

D {10 0 0 0 ∗2 i } NAN 2500

#total_workers, N 6 6 10

workers HC−explore 4 2 3 1

optimizer Adam

α 0.5

γ 0.99

β 0.02

c 1 2

c 2 5

c 3 0.1 0

hl lr 5E-5

ll lr 5E-05 5E-06

ll step limit, s 40 300

B

T

l

m

t

i

f

m

b

t

B

h

s

s

s

w

n

A

v

H

owever, the size of the target set n t expands during learning.

ere we set the corresponding layer size to be a maximum

umber M . During learning, even the input layer size and output

ayer size is a vector of length M , only the front n t numbers

f the subgoal input and target input will be non-zero, and the

orresponding high-level action will only be selected from the

rst n t elements of the high-level output. M is a predefined large

umber, and it has no effect on the learning process.

.1. Long-horizon chain

In this task, the model of low-level executor contains tabular

alues of A (s, g, a) for the actor branch, and C (s, g) for the critic

ranch, in which s, g, a represent the state, subgoal, and action

espectively. Fig. B.11 a shows the model of high-level conductors.

t is evident from the figure that the actor and critic values of HC-

xploit are tabular as well.
Please cite this article as: N. Jiang, S. Jin and C. Zhang, Hierarchical auto

task into dense reward, Neurocomputing, https://doi.org/10.1016/j.neuc
.2. Grid maze

In the grid maze, the agent has no access to the whole map.

he same to the settings in long-horizon chain, the model of the

ow-level executor is tabular. For the ease of designing high-level

odels in different tasks, we simplify the high-level model as the

abular form as well. Experiments show that it achieves surpris-

ngly good performance. The HC-explore maintains A (t, m 1 , m 2)

or the actor branch, and C (t, m 2) for the critic branch. HC-exploit

aintains A (m 1 , m 2) for the actor branch, and C (m 2) for the critic

ranch. t, m 1 , m 2 represent the target, the last high-level action,

he current high-level action, respectively.

.3. Montezuma’s Revenge

Fig. B.11 b plots the model of low-level executor. The model of

igh-level conductors is the same to that in Grid Maze. The raw

tate is a RGB image with size 210 x 180. To emphasize the low-level

ubgoal, the position of the subgoal is highlighted with a white

quare. The top part of the image is cropped and the lower part

ith size 180 × 160 is scaled to 80 × 80 and normalized by a run-

ing mean and standard deviation.

ppendix C. An example state graph in Montezuma’s Revenge

An example state graph and the target set in Montezuma’s Re-

enge is shown in Fig. C.12 . Interestingly, it is generated by the

ACL-random, introduced in Section 5.3 .
Fig. C.12. An example state graph and the target set in Montezuma’s Revenge.

matic curriculum learning: Converting a sparse reward navigation

om.2019.06.024

https://doi.org/10.1016/j.neucom.2019.06.024

14 N. Jiang, S. Jin and C. Zhang / Neurocomputing xxx (xxxx) xxx

ARTICLE IN PRESS

JID: NEUCOM [m5G; July 3, 2019;9:42]

[

References

[1] V. Mnih , K. Kavukcuoglu , D. Silver , A .A . Rusu , J. Veness , M.G. Bellemare ,

A. Graves , M. Riedmiller , A.K. Fidjeland , G. Ostrovski , et al. , Human-level con-

trol through deep reinforcement learning, Nature 518 (7540) (2015) 529–
533 .

[2] D. Silver , A. Huang , C.J. Maddison , A. Guez , L. Sifre , G. Van Den Driessche ,
J. Schrittwieser , I. Antonoglou , V. Panneershelvam , M. Lanctot , et al. , Master-

ing the game of go with deep neural networks and tree search, Nature 529
(7587) (2016) 4 84–4 89 .

[3] S. Mathe , A. Pirinen , C. Sminchisescu , Reinforcement learning for visual object

detection, in: Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, 2016, pp. 2894–2902 .

[4] M. Bellver , X. Giro-i Nieto , F. Marques , J. Torres , Hierarchical object detection
with deep reinforcement learning, in: Proceedings of the Deep Reinforcement

Learning Workshop, NIPS, 2016 .
[5] S.J. Rennie , E. Marcheret , Y. Mroueh , J. Ross , V. Goel , Self-critical sequence

training for image captioning, in: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2017 .

[6] S. Liu , Z. Zhu , N. Ye , S. Guadarrama , K. Murphy , Improved image captioning via

policy gradient optimization of spider, in: Proceedings of the IEEE International
Conference Computer Vision, 3, 2017, p. 3 .

[7] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal policy op-
timization algorithms, arXiv e-prints (2017). arXiv:1707.06347 .

[8] J. Schulman , S. Levine , P. Abbeel , M. Jordan , P. Moritz , Trust region policy opti-
mization, in: Proceedings of the International Conference on Machine Learning,

2015, pp. 1889–1897 .

[9] P. Mirowski , R. Pascanu , F. Viola , H. Soyer , A.J. Ballard , A. Banino , M. Denil ,
R. Goroshin , L. Sifre , K. Kavukcuoglu , D. Kumaran , R. Hadsell , Learning to navi-

gate in complex environments, in: Proceedings of the International Conference
on Learning Representations, 2017 .

[10] P. Mirowski , M.~K. Grimes , M. Malinowski , K.~M. Hermann , K. Anderson ,
D. Teplyashin , K. Simonyan , K. Kavukcuoglu , A. Zisserman , R. Hadsell , Learn-

ing to Navigate in Cities Without a Map, in: Proceedings of NIPS, 2018 .

[11] S. Gupta , J. Davidson , S. Levine , R. Sukthankar , J. Malik , Cognitive mapping and
planning for visual navigation, in: Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, 2017 .
[12] Y. Zhu , R. Mottaghi , E. Kolve , J.J. Lim , A. Gupta , L. Fei-Fei , A. Farhadi , Target–

driven visual navigation in indoor scenes using deep reinforcement learning,
in: Proceedings of the ICRA, IEEE, 2017, pp. 3357–3364 .

[13] D.L. Cruz , W. Yu , Path planning of multi-agent systems in unknown environ-

ment with neural kernel smoothing and reinforcement learning, Neurocom-
puting 233 (2017) 34–42 .

[14] H. Van Hasselt , A. Guez , D. Silver , Deep reinforcement learning with double
q-learning., in: Proceedings of the AAAI, 2016 .

[15] M. Hessel , J. Modayil , H. van Hasselt , T. Schaul , G. Ostrovski , W. Dabney ,
D. Horgan , B. Piot , M.G. Azar , D. Silver , Rainbow: combining improvements in

deep reinforcement learning, in: Proceedings of the AAAI, 2018 .

[16] D. Horgan , J. Quan , D. Budden , G. Barth-Maron , M. Hessel , H. van Hasselt ,
D. Silver , Distributed prioritized experience replay, in: Proceedings of the In-

ternational Conference on Learning Representations, 2018 .
[17] M.C. Machado , C. Rosenbaum , X. Guo , M. Liu , G. Tesauro , M. Campbell ,

Eigenoption discovery through the deep successor representation, in: Proceed-
ings of the International Conference on Learning Representations, 2018 .

[18] H.M. Le , N. Jiang , A. Agarwal , M. Dudk , Y. Yue , H. Daum III , Hierarchical im-

itation and reinforcement learning, in: Proceedings of the 35nd International
Conference on Machine Learning, 2018 .

[19] Y. Aytar , T. Pfaff, D. Budden , T. Le Paine , Z. Wang , N. de Freitas , Playing hard
exploration games by watching YouTube, in: Proceedings of NIPS, 2018 .

[20] P.-L. Bacon , J. Harb , D. Precup , The option-critic architecture., in: Proceedings
of the AAAI, 2017 .

[21] T.D. Kulkarni , K. Narasimhan , A. Saeedi , J. Tenenbaum , Hierarchical deep rein-
forcement learning: Integrating temporal abstraction and intrinsic motivation,

in: Proceedings of the NIPS, 2016 .

[22] S.P. Singh , A.G. Barto , N. Chentanez , Intrinsically motivated reinforcement
learning., in: Proceedings of the NIPS, 2004 .

[23] M. Bellemare , S. Srinivasan , G. Ostrovski , T. Schaul , D. Saxton , R. Munos , Unify-
ing count-based exploration and intrinsic motivation, in: Proceedings of NIPS,

2016 .
[24] G. Ostrovski , M.G. Bellemare , A. van den Oord , R. Munos , Count-based explo-

ration with neural density models, in: Proceedings of the 34nd International

Conference on Machine Learning, 2017 .
[25] C. Florensa , Y. Duan , P. Abbeel , Stochastic neural networks for hierarchical rein-

forcement learning, in: Proceedings of the International Conference on Learn-
ing Representations, 2017 .

[26] D. Pathak , P. Agrawal , A .A . Efros , T. Darrell , Curiosity-driven exploration by self-
-supervised prediction, in: Proceedings of the 34nd International Conference

on Machine Learning, 2017 .

[27] C. Tessler , S. Givony , T. Zahavy , D.J. Mankowitz , S. Mannor , A deep hierarchical
approach to lifelong learning in minecraft, in: Proceedings of the AAAI, 2017 .

[28] N. Heess, G. Wayne, Y. Tassa, T. Lillicrap, M. Riedmiller, D. Silver, Learning and
transfer of modulated locomotor controllers, arXiv e-prints (2016). arXiv:1610.

05182 .
[29] Y. Bengio , J. Louradour , R. Collobert , J. Weston , Curriculum learning, in: Pro-

ceedings of the 26nd International Conference on Machine Learning, 2009 .
Please cite this article as: N. Jiang, S. Jin and C. Zhang, Hierarchical auto

task into dense reward, Neurocomputing, https://doi.org/10.1016/j.neuc
[30] W. Zaremba , I. Sutskever , Learning to execute, in: Proceedings of the Interna-
tional Conference on Learning Representations, 2015 .

[31] A. Graves , M.G. Bellemare , J. Menick , R. Munos , K. Kavukcuoglu , Automated
curriculum learning for neural networks, in: Proceedings of the 34nd Interna-

tional Conference on Machine Learning, 2017 .
[32] S. Narvekar , J. Sinapov , M. Leonetti , P. Stone , Source task creation for curricu-

lum learning, in: Proceedings of the AAMAS, 2016 .
[33] M. Svetlik , M. Leonetti , J. Sinapov , R. Shah , N. Walker , P. Stone , Automatic cur-

riculum graph generation for reinforcement learning agents, in: Proceedings of

the AAAI, 2017 .
[34] C. Florensa , D. Held , X. Geng , P. Abbeel , Automatic goal generation for rein-

forcement learning agents, in: Proceedings of the 35nd International Confer-
ence on Machine Learning, 2018 .

[35] R.S. Sutton , D. Precup , S. Singh , Between MDPS and semi-MDPS: a frame-
work for temporal abstraction in reinforcement learning, Artif. Intell. 112 (1–2)

(1999) 181–211 .

[36] V. Mnih , A.P. Badia , M. Mirza , A. Graves , T. Lillicrap , T. Harley , D. Silver ,
K. Kavukcuoglu , Asynchronous methods for deep reinforcement learning, in:

Proceedings of the International Conference on Machine Learning, 2016 .
[37] L. Zuo , Q. Guo , X. Xu , H. Fu , A hierarchical path planning approach based on

a and least-squares policy iteration for mobile robots, Neurocomputing 170
(2015) 257–266 .

[38] A.S. Vezhnevets , S. Osindero , T. Schaul , N. Heess , M. Jaderberg , D. Silver ,

K. Kavukcuoglu , Feudal networks for hierarchical reinforcement learning, in:
Proceedings of the 34nd International Conference on Machine Learning, 2017 .

[39] M. Stolle , Automated discovery of options in reinforcement learning, McGill
University, 2004 Ph.D. thesis .

[40] M.C. Machado , M.G. Bellemare , M.H. Bowling , A Laplacian framework for op-
tion discovery in reinforcement learning, in: Proceedings of the 34nd Interna-

tional Conference on Machine Learning, 2017 .

[41] M.C. Machado , C. Rosenbaum , X. Guo , M. Liu , G. Tesauro , M. Campbell ,
Eigenoption discovery through the deep successor representation, in: Proceed-

ings of the International Conference on Learning Representations, 2018 .
[42] K. Frans , J. Ho , X. Chen , P. Abbeel , J. Schulman , Meta Learning Shared Hierar-

chies, in: Proceedings of the International Conference on Learning Representa-
tions, 2018 .

[43] S. Sukhbaatar , Z. Lin , I. Kostrikov , G. Synnaeve , A. Szlam , R. Fergus , Intrinsic

motivation and automatic curricula via asymmetric self-play, in: Proceedings
of the International Conference on Learning Representations, 2018 .

44] A. Vezhnevets , V. Mnih , S. Osindero , A. Graves , O. Vinyals , J. Agapiou ,
k. kavukcuoglu , Strategic attentive writer for learning macro-actions, in: Pro-

ceedings of NIPS, 2016 .
[45] Z. Ren , D. Dong , H. Li , C. Chen , Self-paced prioritized curriculum learning with

coverage penalty in deep reinforcement learning, IEEE Trans. Neural Netw.

Learn. Syst. 29 (6) (2018) 2216–2226 .

Nan Jiang received the B.S. degree from the Department

of Physics, Tsinghua University, China, in 2015 and cur-
rently a Ph.D. candidate at the State Key Laboratory of

Intelligent Technologies and Systems, Department of Au-
tomation, Tsinghua university, Beijing China. Her research

interests include deep reinforcement learning, hierarchi-
cal reinforcement learning, computer vision.

Sheng Jin received the B.S. degree from the Department

of Automation, Tsinghua University, China in 2017 and
currently a Master student at the State Key Laboratory of

Intelligent Technologies and Systems, Department of Au-

tomation, Tsinghua University. His interests include deep
reinforcement learning, computer vision.

Changshui Zhang received the B.S. degree in mathemat-

ics from Peking University, Beijing, China, in 1986 and the
M.S. and Ph.D. degrees in control science and engineering

from Tsinghua University, Beijing, in 1989 and 1992, re-
spectively. Since 1992, he has been with the Department

of Automation, Tsinghua University, where he is currently
a Professor. He is the author of more than 200 papers.

His research interests include pattern recognition and ma-

chine learning.
Dr. Zhang is a member of the Standing Council of the

Chinese Association of Artificial Intelligence. He currently
serves as an Associate Editor of Pattern Recognition Jour-

nal.
matic curriculum learning: Converting a sparse reward navigation

om.2019.06.024

http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0001
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0001
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0001
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0001
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0001
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0001
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0001
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0001
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0001
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0001
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0001
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0001
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0002
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0003
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0003
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0003
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0003
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0004
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0004
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0004
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0004
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0004
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0005
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0005
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0005
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0005
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0005
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0005
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0006
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0006
http://arxiv.org/abs/1707.06347
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0007
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0007
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0007
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0007
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0007
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0007
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0008
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0009a
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0009a
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0009a
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0009a
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0009a
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0009a
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0009a
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0009a
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0009a
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0009a
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0009a
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0009
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0009
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0009
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0009
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0009
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0009
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0010
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0010
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0010
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0010
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0010
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0010
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0010
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0010
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0011
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0011
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0011
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0012
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0012
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0012
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0012
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0013
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0013
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0013
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0013
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0013
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0013
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0013
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0013
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0013
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0013
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0013
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0014
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0015
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0015
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0015
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0015
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0015
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0015
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0015
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0016
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0016
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0016
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0016
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0016
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0016
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0016
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0009ccd
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0009ccd
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0009ccd
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0009ccd
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0009ccd
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0009ccd
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0009ccd
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0017
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0017
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0017
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0017
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0018
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0018
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0018
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0018
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0018
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0019
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0019
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0019
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0019
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0020
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0020
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0020
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0020
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0020
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0020
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0020
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0021
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0021
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0021
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0021
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0021
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0022
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0022
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0022
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0022
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0023
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0023
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0023
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0023
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0023
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0024
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0024
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0024
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0024
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0024
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0024
http://arxiv.org/abs/1610.05182
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0025
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0025
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0025
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0025
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0025
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0026
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0026
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0026
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0027
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0027
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0027
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0027
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0027
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0027
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0028
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0028
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0028
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0028
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0028
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0029
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0029
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0029
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0029
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0029
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0029
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0029
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0030
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0030
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0030
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0030
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0030
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0031
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0031
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0031
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0031
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0032
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0032
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0032
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0032
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0032
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0032
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0032
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0032
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0032
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0033
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0033
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0033
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0033
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0033
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0034
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0034
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0034
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0034
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0034
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0034
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0034
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0034
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0035
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0035
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0036
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0036
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0036
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0036
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0037
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0037
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0037
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0037
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0037
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0037
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0037
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0038
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0038
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0038
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0038
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0038
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0038
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0039
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0039
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0039
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0039
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0039
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0039
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0039
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0040
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0040
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0040
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0040
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0040
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0040
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0040
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0040
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0041
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0041
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0041
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0041
http://refhub.elsevier.com/S0925-2312(19)30851-3/sbref0041
https://doi.org/10.1016/j.neucom.2019.06.024

	Hierarchical automatic curriculum learning: Converting a sparse reward navigation task into dense reward
	1 Introduction
	2 Notation and formulation
	2.1 Hierarchical formulation
	2.2 Curriculum formulation

	3 Methods and models
	3.1 Framework
	3.2 High-level conductor
	3.3 Low-level executor
	3.4 State graph
	3.4.1 The update of the state graph
	3.4.2 The expansion of the target set

	4 Experiments
	4.1 Environments
	4.1.1 Long-horizon chain
	4.1.2 Grid maze
	4.1.3 Montezuma’s revenge

	4.2 Experimental settings
	4.3 Performance
	4.4 Ablative analysis
	4.4.1 Macro-state abstraction
	4.4.2 Curriculum setting
	4.4.3 Functionality of two high-level conductors

	5 Analysis
	5.1 Curriculum sequence
	5.2 Guides in choosing the threshold δ
	5.3 The robustness of HACL

	6 Related works
	7 Conclusion and future work
	Conflict of interest
	Acknowledgement
	Appendix A Algorithm of HACL
	Appendix B Experimental settings
	B.1 Long-horizon chain
	B.2 Grid maze
	B.3 Montezuma’s Revenge

	Appendix C An example state graph in Montezuma’s Revenge
	References

