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Abstract

We propose a unified framework for multi-person pose
estimation and tracking. Our framework consists of two
main components, i.e. SpatialNet and TemporalNet. The
SpatialNet accomplishes body part detection and part-level
data association in a single frame, while the TemporalNet
groups human instances in consecutive frames into trajec-
tories. Specifically, besides body part detection heatmaps,
SpatialNet also predicts the Keypoint Embedding (KE) and
Spatial Instance Embedding (SIE) for body part associa-
tion. We model the grouping procedure into a differentiable
Pose-Guided Grouping (PGG) module to make the whole
part detection and grouping pipeline fully end-to-end train-
able. TemporalNet extends spatial grouping of keypoints to
temporal grouping of human instances. Given human pro-
posals from two consecutive frames, TemporalNet exploits
both appearance features encoded in Human Embedding
(HE) and temporally consistent geometric features embod-
ied in Temporal Instance Embedding (TIE) for robust track-
ing. Extensive experiments demonstrate the effectiveness
of our proposed model. Remarkably, we demonstrate sub-
stantial improvements over the state-of-the-art pose track-
ing method from 65.4% to 71.8% Multi-Object Tracking Ac-
curacy (MOTA) on the ICCV’17 PoseTrack Dataset.

1. Introduction
Multi-person articulated tracking aims at predicting the

body parts of each person and associating them across tem-
poral periods. It has stimulated much research interest be-
cause of its importance in various applications such as video
understanding and action recognition [5]. In recent years,
significant progress has been made in single frame human
pose estimation [3, 9, 12, 24]. However, multi-person ar-
ticulated tracking in complex videos remains challenging.
Videos may contain a varying number of interacting people
with frequent body part occlusion, fast body motion, large
pose changes, and scale variation. Camera movement and
zooming further pose challenges to this problem.

Figure 1. (a) Pose estimation with KE or SIE. SIE may over-
segment a single pose into several parts (column 2), while KE may
erroneously group far-away body parts together (column 3). (b)
Pose tracking with HE or TIE. Poses are color coded by predicted
track ids and errors are highlighted by eclipses. TIE is not robust
to camera zooming and movement (column 2), while HE is not ro-
bust to human pose changes (column 3). (c) Effect of PGG mod-
ule. Comparing KE before/after PGG (column 3/4), PGG makes
embeddings more compact and accurate, where pixels with similar
color have higher confidence of belonging to the same person.

Pose tracking [14] can be viewed as a hierarchical de-
tection and grouping problem. At the part level, body parts
are detected and grouped spatially into human instances in
each single frame. At the human level, the detected human
instances are grouped temporally into trajectories.

Embedding can be viewed as a kind of permutation-
invariant instance label to distinguish different instances.
Previous works [20] perform keypoint grouping with Key-
point Embedding (KE). KE is a set of 1-D appearance em-
bedding maps where joints of the same person have similar
embedding values and those of different people have dis-

1

ar
X

iv
:1

90
3.

09
21

4v
1 

 [
cs

.C
V

] 
 2

1 
M

ar
 2

01
9



similar ones. However, due to the over-flexibility of the
embedding space, such representations are difficult to in-
terpret and hard to learn [23]. Arguably, a more natural
way for the human to assign ids to targets in an image is
by counting in a specific order (from left to right and/or
from top to bottom). This inspires us to enforce geomet-
ric ordering constraints on the embedding space to facilitate
training. Specifically, we add six auxiliary ordinal-relation
prediction tasks for faster convergence and better interpreta-
tion of KE by encoding the knowledge of geometric order-
ing. Recently, Spatial Instance Embedding (SIE) [22, 23] is
introduced for body part grouping. SIE is a 2-D embedding
map, where each pixel is encoded with the predicted human
center location (x, y). Fig. 1(a) illustrates the typical error
patterns of pose estimation with KE or SIE. SIE may over-
segment a single pose into several parts (column 2), while
KE sometimes erroneously groups far-away body parts to-
gether (column 3). KE better preserves intra-class consis-
tency but has difficulty in separating instances for lack of
geometric constraints. Since KE captures appearance fea-
tures while SIE extracts geometric information, they are
naturally complementary to each other. Therefore we com-
bine them to achieve better grouping results.

In this paper, we propose to extend the idea of using ap-
pearance and geometric information in a single frame to
the temporal grouping of human instances for pose track-
ing. Previous pose tracking algorithms mostly rely on
task-agnostic similarity metrics such as the Object Key-
point Similarity (OKS) [33, 35] and Intersection over Union
(IoU) [8]. However, such simple geometric cues are not ro-
bust to fast body motion, pose changes, camera movement
and zoom. For robust pose tracking, we extend the idea of
part-level spatial grouping to human-level temporal group-
ing. Specifically, we extend KE to Human Embedding (HE)
for capturing holistic appearance features and extend SIE
to Temporal Instance Embedding (TIE) for achieving tem-
poral consistency. Intuitively, appearance features encoded
by HE are more robust to fast motion, camera movement
and zoom, while temporal information embodied in TIE is
more robust to body pose changes and occlusion. We pro-
pose a novel TemporalNet to enjoy the best of both worlds.
Fig. 1(b) demonstrates typical error patterns of pose track-
ing with HE or TIE. HE exploits scale-invariant appearance
features which are robust to camera zooming and movement
(column 1), and TIE preserves temporal consistency which
is robust to human pose changes (column 4).

Bottom-up pose estimation methods follow the two-
stage pipeline to generate body part proposals at the first
stage and group them into individuals at the second stage.
Since the grouping is mainly used as post-processing, i.e.
graph based optimization [11, 12, 14, 16, 26] or heuris-
tic parsing [3, 23], no error signals from the grouping re-
sults are back-propagated. We instead propose a fully dif-

ferentiable Pose-Guided Grouping (PGG) module, making
detection-grouping fully end-to-end trainable. We are able
to directly supervise the grouping results and the group-
ing loss is back-propagated to the low-level feature learn-
ing stages. This enables more effective feature learning
by paying more attention to the mistakenly grouped body
parts. Moreover, to obtain accurate regression results, post-
processing clustering [22] or extra refinement [23] are re-
quired. Our PGG helps to produce accurate embeddings
(see Fig. 1(c)). To improve the pose tracking accuracy, we
further extend PGG to temporal grouping of TIE.

In this work, we aim at unifying pose estimation and
tracking in a single framework. SpatialNet detects body
parts in a single frame and performs part-level spatial
grouping to obtain body poses. TemporalNet accomplishes
human-level temporal grouping in consecutive frames to
track targets across time. These two modules share the fea-
ture extraction layers to make more efficient inference.

The main contributions are summarized as follows:

• For pose tracking, we extend the KE and SIE in still
images to Human Embedding (HE) and Temporal In-
stance Embeddings (TIE) in videos. HE captures
human-level global appearance features to avoid drift-
ing in camera motion, while TIE provides smoother
geometric features to obtain temporal consistency.

• A fully differentiable Pose-Guided Grouping (PGG)
module for both pose estimation and tracking, which
enables the detection and grouping to be fully end-to-
end trainable. The introduction of PGG and its group-
ing loss significantly improves the spatial/temporal
embedding prediction accuracy.

2. Related Work
2.1. Multi-person Pose Estimation in Images

Recent multi-person pose estimation approaches can be
classified into top-down and bottom-up methods. Top-
down methods [7, 9, 33, 24] locate each person with a
bounding box then apply single-person pose estimation.
They mainly differ in the choices of human detectors [28]
and single-person pose estimators [21, 32]. They highly rely
on the object detector and may fail in cluttered scenes, oc-
clusion, person-to-person interaction, or rare poses. More
importantly, top-down methods perform single-person pose
estimation individually for each human candidate. Thus,
its inference time is proportional to the number of people,
making it hard for achieving real-time performance. Addi-
tionally, the interface between human detection and pose es-
timation is non-differentiable, making it difficult to train in
an end-to-end manner. Bottom-up approaches [3, 12, 26]
detect body part candidates and group them into individ-
uals. Graph-cut based methods [12, 26] formulate group-
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Figure 2. The overview of our framework for pose tracking.

ing as solving a graph partitioning based optimization prob-
lem, while [3, 23] utilize the heuristic greedy parsing al-
gorithm to speed up decoding. However, these bottom-up
approaches only use grouping as post-processing and no er-
ror signals from grouping results are back-propagated.

More recently, efforts have been devoted to end-to-end
training or joint optimization. For top-down methods, Xie
et al. [34] proposes a reinforcement learning agent to bridge
the object detector and the pose estimator. For bottom-up
methods, Newell et al. [20] proposes the keypoint embed-
ding (KE) to tag instances and train by pairwise losses. Our
framework is a bottom-up method inspired by [20]. [20] su-
pervises the grouping in an indirect way. It trains keypoint
embedding descriptors to ease the post-processing group-
ing. However, no direct supervision on grouping results is
provided. Even if the pairwise loss of KE is low, it is still
possible to produce wrong grouping results, but [20] does
not model such grouping loss. We instead propose a dif-
ferentiable Pose-Guided Grouping (PGG) module to learn
to group body parts, making the whole pipeline fully end-
to-end trainable, yielding significant improvement in pose
estimation and tracking.

Our work is also related to [22, 23], where spatial in-
stance embeddings (SIE) are introduced to aid body part
grouping. However, due to lack of grouping supervision,
their embeddings are always noisy [22, 23] and additional
clustering [22] or refinement [23] is required. We instead
employ PGG and additional grouping losses to learn to
group SIE, making it end-to-end trainable while resulting
in much more compact embedding representation.

2.2. Multi-person Pose Tracking

Recent works on multi-person pose tracking mostly fol-
low the tracking-by-detection paradigm, in which human
body parts are first detected in each frame, then data associ-
ation is performed over time to form trajectories.

Offline pose tracking methods take future frames into
consideration, allowing for more robust predictions but hav-
ing high computational complexity. ProTracker [8] em-
ploys 3D Mask R-CNN to improve the estimation of body
parts by leveraging temporal context encoded within a slid-

ing temporal window. Graph partitioning based meth-
ods [11, 14, 16] formulate multi-person pose tracking into
an integer linear programming (ILP) problem and solve
spatial-temporal grouping. Such methods achieve compet-
itive performance in complex videos by enforcing long-
range temporal consistency.

Our approach is an online pose tracking approach, which
is faster and fits for practical applications. Online pose
tracking methods [6, 25, 37, 33] mainly use bi-partite graph
matching to assign targets in the current frame to existing
trajectories. However, they only consider part-level geo-
metric information and ignore global appearance features.
When faced with fast pose motion and camera movement,
such geometrical trackers are prone to tracking errors. We
propose to extend SpatialNet to TemporalNet to capture
both appearance features in HE and temporal coherence in
TIE, resulting in much better tracking performance.

3. Method
As demonstrated in Figure 2, we unify pose estimation

and tracking in a single framework. Our framework consists
of two major components: SpatialNet and TemporalNet.

SpatialNet tackles multi-person pose estimation by body
part detection and part-level spatial grouping. It processes a
single frame at a time. Given a frame, SpatialNet produces
heatmaps, KE, SIE and geometric-ordinal maps simultane-
ously. Heatmaps model the body part locations. KE en-
codes the part-level appearance features, while SIE captures
the geometric information about human centers. The aux-
iliary geometric-ordinal maps enforce ordering constraints
on the embedding space to facilitate training of KE. PGG is
utilized to make both KE and SIE to be more compact and
discriminative. We finally generate the body pose proposals
by greedy decoding following [20].

TemporalNet extends SpatialNet to deal with online
human-level temporal grouping. It consists of HE branch
and TIE branch, and shares the same low-level feature ex-
traction layers with SpatialNet. Given body pose propos-
als, HE branch extracts region-specific embedding (HE) for
each human instance. TIE branch exploits the temporally
coherent geometric embedding (TIE). Given HE and TIE as
pairwise potentials, a simple bipartite graph matching prob-
lem is solved to generate pose trajectories.

3.1. SpatialNet: Part-level Spatial Grouping

Throughout the paper, we use following notations. Let
p = (x, y) ∈ R2 be the 2-D position in an image, and
pj,k ∈ R2 the location of body part j for person k. We
use Pk = {pj,k}j=1:J to represent the body pose of the
kth person. We use 2D Gaussian confidence heatmaps to
model the body part locations. Let Cj,k be the confidence
heatmap for the jth body part of kth person, which is calcu-
lated by Cj,k(p) = exp(−‖p − pj,k‖22/σ2) for each po-



sition p in the image, where σ is set as 2 in the experi-
ments. Following [3], we take the maximum of the confi-
dence heatmaps to get the ground truth confidence heatmap,
i.e. C∗j (p) = maxk C

∗
j,k(p).

The detection loss is calculated by weighted `2 distance
respect to the ground truth confidence heatmaps.

Ldet =
∑
j

∑
p

‖C∗j (p)− Cj(p)‖22. (1)

3.1.1 Keypoint Embedding (KE) with auxiliary tasks

We follow [20] to produce the keypoint embedding K for
each type of body part. However, such kind of embedding
representation has several drawbacks. First, the embedding
is difficult to interpret [20, 23]. Second, it is hard to learn
due to its over-flexibility with no direct supervision avail-
able. To overcome these drawbacks, we introduce several
auxiliary tasks to facilitate training and improve interpreta-
tion. The idea of auxiliary learning [31] has shown effective
both in supervised learning [27] and reinforcement learn-
ing [15]. Here, we explore auxiliary training in the context
of keypoint embedding representation learning.

By auxiliary training, we explicitly enforce the embed-
ding maps to learn geometric ordinal relations. Specifically,
we define six auxiliary tasks: to predict the ’left-to-right’
l2r, ’right-to-left’ r2l, ’top-to-bottom’ t2b, ’bottom-to-top’
b2t, ’far-to-near’ f2n and ’near-to-far’ n2f orders of hu-
man instances in a single image. For example, in the ‘left-
to-right’ map, the person from left to right in the images
should have low to high order (value). Fig. 4 (c)(d)(e) visu-
alize some example predictions of the auxiliary tasks. We
see human instances are clearly arranged in the correspond-
ing geometric ordering. We also observe that KE (Fig. 4
(b)) and the geometric ordinal-relation maps (c)(d)(e) share
some similar patterns, which suggests that KE acquires
some knowledge of geometric ordering.

Following [20], K is trained with pairwise grouping loss
LKE = Lpull+Lpush. The pull loss (Eq. 2) is computed as
the squared distance between the human reference embed-
ding and the predicted embedding of each joint. The push
loss (Eq. 3) is calculated between different reference em-
beddings, which exponentially drops to zero as the increase
of embedding difference. Formally, we define the reference
embedding for the kth person as m̄·,k = 1

J

∑
jmj(pj,k).

Lpull =
1

J ·K
∑
k

∑
j

‖m(pj,k)− m̄·,k‖22. (2)

Lpush =
1

K2

∑
k

∑
k′

exp{−1

2
(m̄·,k − m̄·,k′)2}. (3)

For auxiliary training, we replace the push loss with the
ordinal loss but keep the pull loss (Eq. 2) the same.

Laux =
1

K2

∑
k

∑
k′

log(1 + exp(Ord ∗ (m̄·,k − m̄·,k′)))

+
1

J ·K
∑
k

∑
j

‖m(pj,k)− m̄·,k‖22, (4)

where Ord = {1,−1} indicates the ground-truth order for
person k and k′. In l2r, r2l, t2b, and b2t, we sort human in-
stances by their centroid locations. For example, in l2r , if
kth person is on the left of k′th person, then Ord = 1, oth-
erwise Ord = −1. In f2n and n2f, we sort them according
to the head size ‖pheadtop,k − pneck,k‖22.

3.1.2 Spatial Instance Embedding (SIE)

For lack of geometric information, KE has difficulty in sep-
arating instances and tends to erroneously group with dis-
tant body parts. To remedy this, we combine KE with SIE
to embody instance-wise geometric cues. Concretely, we
predict the dense offset spatial vector fields (SVF), where
each 2-D vector encodes the relative displacement from the
human center to its absolute location p. Fig. 4(f)(g) visu-
alize the spatial vector fields of x-axis and y-axis, which
distinguish the left/right sides and upper/lower sides rela-
tive to its body center. As shown in Fig. 3, subtracted by its
coordinate, SVF can be decoded to SIE in which each pixel
is encoded with the human center location.

We denote the spatial vector fields (SVF) by Ŝ, and SIE
by S. We use `1 distance to train SVF, where the ground
truth spatial vector is the displacement from the person cen-
ter to each body part.

LSIE =
1

J ·K

J∑
j=1

K∑
k=1

‖Ŝ(pj,k)− (pj,k − p·,k)‖1, (5)

where p·,k = 1
J

∑
j pj,k, is the center of person k.

3.2. Pose-Guided Grouping (PGG) Module

In prior bottom-up methods [3, 22, 23], detection and
grouping are separated. We reformulate the grouping pro-
cess into a differentiable Pose-Guided Grouping (PGG)
module for end-to-end training. By directly supervising the
grouping results, more accurate estimation is obtained.

Our PGG is based on Gaussian Blurring Mean Shift
(GBMS) [4] algorithm and inspired by [17], which is orig-
inally proposed for segmentation. However, directly apply-
ing GBMS in the challenging articulate tracking task is not
desirable. First, the complexity of GBMS is O(n2), where
n is the number of feature vectors to group. Direct use of
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Algorithm 1 Pose-Guided Grouping
Input: KE K, SIE S, Mask M, and iteration number R.
Output: X

1: Concatenate K and S, mask-selected by M, and re-
shape to X(1) ∈ RD×N .

2: Initialize X =
[
X(1)

]
3: for r = 1, 2, · · ·R do
4: Gaussian Affinity W(r) ∈ RN×N . W(r)(i, j) =

exp(− δ
2

2 ‖x
(r)
i − x

(r)
j ‖22), ∀x(r)i , x

(r)
j ∈ X(r).

5: Normalization Matrix. D(r) = diag
(
W(r) · ~1

)
6: Update. X(r+1) = X(r)W(r)

(
D(r)

)−1
7: X =

[
X ;X(r+1)

]
8: end for
9: return X

GBMS on the whole image will lead to huge memory con-
sumption. Second, the predicted embeddings are always
noisy especially in background regions, where no supervi-
sion is available during training. As illustrated in the top
row of Fig. 4, embedding noises exist in the background
area (the ceiling or the floor). The noise in these irrele-
vant regions will affect the mean-shift grouping accuracy.
We propose a novel Pose-Guided Grouping module to ad-
dress the above drawbacks. Considering the sparseness of
the matrix (body parts only occupy a small area in images),
we propose to use the human pose mask to guide group-
ing, which rules out irrelevant areas and significantly re-
duces the memory cost. As shown in Fig. 3, we apply max
along the channel C̄(p) = maxj Cj(p) and generate the
instance-agnostic pose mask M ∈ RW×H , by thresholding
at τ = 0.2. M(p) is 1 if C̄(p) > τ , otherwise 0.

Both spatial (KE and SIE) and temporal (TIE) embed-
dings can be grouped by PGG. Take spatial grouping for

example, we refine KE and SIE with PGG module to get
more compact and discriminative embedding descriptors.
The Pose-Guided Grouping algorithm is summarized in
Alg. 1. KE and SIE are first concatenated to D ×W × H
dimensional feature maps. Then embeddings are selected
according to the binary pose mask M and reshaped to
X(1) ∈ RD×N as initialization, where N is the number
of non-zero elements in M, (N � W × H). Recurrent
mean-shift grouping is then applied to X(1) for R itera-
tions. In each iteration, the Gaussian affinity is first cal-
culated with the isotropic multivariate normal kernel W =

exp(− δ
2

2 ‖x − xi‖
2
2), where the kernel bandwidth δ is em-

pirically chosen as 5 in the experiments. W ∈ RN×N can
be viewed as the weighted adjacency matrix. The diago-
nal matrix of affinity row sum D = diag(W · ~1) is used
for normalization, where ~1 means a vector with all entries
one. We then update X with the normalized Gaussian ker-
nel weighted mean, X = XWD−1. After several itera-
tions of grouping refinement, the embeddings become dis-
tinct for heterogeneous pairs and similar for homogeneous
ones. When training, we apply the pairwise pull/push losses
(Eq. 2 and 3) over all iterations of grouping results X .

3.3. TemporalNet: Human Temporal Grouping

TemporalNet extends SpatialNet to perform human-level
temporal grouping in an online manner. Formally, we use
the superscript t to distinguish different frames. It denotes
the input frame at time-step t, which contains Kt persons.
SpatialNet is applied to It to estimate a set of poses Pt =
{P t1 , . . . P tKt}. TemporalNet aims at temporally grouping
human pose proposals Pt in the current frame with already
tracked poses Pt−1 in the previous frame. TemporalNet ex-
ploits both human-level appearance features (HE) and tem-
porally coherent geometric information (TIE) to calculate
the total pose similarity. Finally, we generate the pose tra-
jectories by solving the bipartite graph matching problems,
using pose similarity as pairwise potentials.

3.3.1 Human Embedding (HE)

To obtain human-level appearance embedding (HE), we in-
troduce a region-specific HE branch based on [36]. Given
predicted pose proposals, HE brach first calculates human
bounding boxes to cover the corresponding human key-
points. For each bounding box, ROI-Align pooling [9] is ap-
plied to the shared low-level feature maps to extract region-
adapted ROI features. The ROI features are then mapped
to the human embedding H ∈ R3072. HE is trained with
triplet loss [30], pulling HE of the same instance closer, and
pushing apart embeddings of different instances.

LHE =
∑
k1=k2
k1 6=k3

max(0, ‖Hk1−Hk2‖22−‖Hk1−Hk3‖22+α),

(6)
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Figure 4. (a) input image. (b) the average KE. (c)(d)(e) predicted ’left-to-right’, ’top-to-bottom’ and ’far-to-near’ geometric-relation maps.
We use colors to indicate the predicted orders, where the brighter color means the higher ordinal value. (f)(g) are the spatial vector fields
of x-axis and y-axis respectively. The bright color means positive offset relative to the human center, while dark color means negative.

where the margin term α is set to 0.3 in the experiments.

3.3.2 Temporal Instance Embedding (TIE)

To exploit the temporal information for pose tracking, we
naturally extend the Spatial Instance Embedding (SIE) to
the Temporal Instance Embedding (TIE). TIE branch con-
catenates low-level features, body part detection heatmaps
and SIE from two neighboring frames. The concatenated
feature maps are then mapped to dense TIE.

TIE is a task-specific representation which measures the
displacement between the keypoint of one frame and the
human center of another frame. This design utilizes the
mutual information between keypoint and human in adja-
cent frames to handle occlusion and pose motion simulta-
neously. Specifically, we introduce bi-directional temporal
vector fields (TVF), which are denoted as T̂ and T̂ ′ respec-
tively. Forward TVF T̂ encodes the relative displacement
from the human center in (t − 1)-th frame to body parts in
the t-th frame, it temporally propagates the human centroid
embeddings from (t−1)-th to t-th frame. In contrast, Back-
ward TVF T̂ ′ represents the offset from current t-th frame
body center to body parts in the previous frame.

LTIE =
1

J ·Kt

J∑
j=1

Kt∑
k=1

‖T̂ (ptj,k)− (ptj,k − pt−1·,k )‖1

+
1

J ·Kt−1

J∑
j=1

Kt−1∑
k′=1

‖T̂ ′(pt−1j,k′ )− (pt−1j,k′ − p
t
·,k′)‖1,

(7)

where pt·,k = 1
J

∑
j p

t
j,k, is the center of person k at time

step t. Simply subtracted from absolute locations, we get
the corresponding Forward TIE T and Backward TIE T ′.
Thereby, TIE encodes the temporally propagated human
centroid. Likewise, we also extend the idea of spatial group-
ing to temporal grouping. TemporalNet outputs Forward
TIE T and Backward TIE T ′, which are refined by PGG
independently. Take Forward TIE T for example, we gen-
erate pose mask M using body heatmaps from the t-th

frame. We rule out irrelevant regions of T and reshape it to
X(1) ∈ RD×N . Subsequently, recurrent mean-shift group-
ing is applied. Again, additional grouping losses (Eq. 2,3)
are used to train TIE.

3.3.3 Pose Tracking

The problem of temporal pose association is formulated as
a bipartite graph based energy maximization problem. The
estimated poses Pt are then associated with the previous
poses Pt−1 by bipartite graph matching.

ẑ = argmax
z

∑
P t

k∈Pt

∑
P t−1

k′ ∈P
t−1

ΨP t
k,P

t−1

k′
· zP t

k,P
t−1

k′
(8)

s.t. ∀P tk ∈ Pt,
∑

P t−1

k′ ∈P
t−1

zP t
k,P

t−1

k′
≤ 1

and ∀P t−1k′ ∈ P
t−1,

∑
P t

k∈Pt

zP t
k,P

t−1

k′
≤ 1,

where zP t
k,P

t−1

k′
∈ {0, 1} is a binary variable which implies

if the pose hypothesis P tk and P t−1k′ are associated. The
pairwise potentials Ψ represent the similarity between pose
hypothesis. Ψ = λHEΨHE + λTIEΨTIE , with ΨHE for
human-level appearance similarity and ΨTIE for temporal
smoothness. λHE and λTIE are hyperparameters to bal-
ance them, with λHE = 3 and λTIE = 1.

The human-level appearance similarity is calculated as
the `2 embedding distance: ΨHE = ‖Hk−Hk′‖22. And the
temporal smoothness term ΨTIE is computed as the simi-
larity between the encoded human center locations in SIE S
and the temporally propagated TIE T , T ′.

ΨTIE =
1

2J

J∑
j=1

(
‖T ′(pt−1j,k′ )− S

t(ptj,k)‖22

+ ‖T (ptj,k)− St−1(pt−1j,k′ )‖
2
2

)
, (9)

The bipartite graph matching problem (Eq. 8) is solved
using Munkres algorithm to generate pose trajectories.



3.4. Implementation Details

Following [20], SpatialNet uses the 4-stage stacked-
hourglass as its backbone. We first train SpatialNet with-
out PGG. The total losses consist of Ldet, LKE , Laux and
LSIE , with their weights 1:1e-3:1e-4:1e-4. We set the ini-
tial learning rate to 2e-4 and reduce it to 1e-5 after 250K it-
erations. Then we fine-tune SpatialNet with PGG included.
In practice, we have found the iteration number R = 1 is
sufficient, and more iterations do not lead to much gain.

TemporalNet uses 1-stage hourglass model [21]. When
training, we simply fix SpatialNet and train TemporalNet
for another 40 epochs with learning rate of 2e-4. We ran-
domly select a pair of images It and It

′
from a range-5

temporal window (‖t− t′‖1 ≤ 5) in a video clip as input.

4. Experiments
4.1. Datasets and Evaluation

MS-COCO Dataset [19] contains over 66k images with
150k people and 1.7 million labeled keypoints, for pose es-
timation in images. For the MS-COCO results, we follow
the same train/val split as [20], where a held-out set of 500
training images are used for evaluation.

ICCV’17 PoseTrack Challenge Dataset [13] is a
large-scale benchmark for multi-person articulated track-
ing, which contains 250 video clips for training and 50 se-
quences of videos for validation.

Evaluation Metrics: We follow [13] to use AP to evalu-
ate multi-person pose estimation and the multi-object track-
ing accuracy (MOTA) [2] to measure tracking performance.

4.2. Comparisons with the State-of-the-art Methods

We compare our framework with the state-of-the-art
methods on both pose estimation and tracking on the
ICCV’17 PoseTrack validation set. As a common prac-
tice [13], additional images from MPII-Pose [1] are used
for training. Table 1 demonstrate our single-frame pose es-
timation performance. We show that our model achieves the
state-of-the-art 77.0 mAP without single-person pose model
refinement. Table 2 evaluates the multi-person articulated
tracking performance. Our model outperforms the state-
of-the-art methods by a large margin. Compared with the
winner of ICCV’17 PoseTrack Challenge (ProTracker [8]),
our method obtain an improvement of 16.6% in MOTA.
Our model further improves over the current state-of-the-
art pose tracker (FlowTrack [33]) by 6.4% in MOTA with
comparable single frame pose estimation accuracy, indicat-
ing the effectiveness of our TemporalNet.

4.3. Ablation Study

We extensively evaluate the effect of each component in
our framework. Table 3 summarizes the single-frame pose
estimation results, and Table 4 the pose tracking results.

Method Head Shou Elb Wri Hip Knee Ankl Total
ProTracker [8] 69.6 73.6 60.0 49.1 65.6 58.3 46.0 60.9
PoseFlow [35] 66.7 73.3 68.3 61.1 67.5 67.0 61.3 66.5
BUTDS [16] 79.1 77.3 69.9 58.3 66.2 63.5 54.9 67.8
ArtTrack [13] 78.7 76.2 70.4 62.3 68.1 66.7 58.4 68.7
ML Lab [37] 83.8 84.9 76.2 64.0 72.2 64.5 56.6 72.6
FlowTrack [33] 81.7 83.4 80.0 72.4 75.3 74.8 67.1 76.9
Ours 83.8 81.6 77.1 70.0 77.4 74.5 70.8 77.0

Table 1. Comparisons with the state-of-the-art methods on single-
frame pose estimation on ICCV’17 PoseTrack Challenge Dataset.

Method MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA
Head Shou Elb Wri Hip Knee Ankl Total

ArtTrack [13] 66.2 64.2 53.2 43.7 53.0 51.6 41.7 53.4
ProTracker [8] 61.7 65.5 57.3 45.7 54.3 53.1 45.7 55.2
BUTD2 [16] 71.5 70.3 56.3 45.1 55.5 50.8 37.5 56.4
PoseFlow [35] 59.8 67.0 59.8 51.6 60.0 58.4 50.5 58.3
JointFlow [6] - - - - - - - 59.8
FlowTrack [33] 73.9 75.9 63.7 56.1 65.5 65.1 53.5 65.4

Ours 78.7 79.2 71.2 61.1 74.5 69.7 64.5 71.8

Table 2. Comparisons with the state-of-the-art methods on multi-
person pose tracking on ICCV’17 PoseTrack Challenge Dataset.
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Figure 6. (a) Histogram of the memory cost ratio between PGG
and GBMS [4] memory cost of PGG

memory cost of GBMS on the PoseTrack val set. Using
the instance-agnostic pose mask, PGG reduces the memory con-
sumption to about 1%, i.e. 100 times more efficient. (b) Runtime
analysis. CNN processing time is measured on one GTX-1060
GPU, while PoseTrack [14] and our tracking algorithm is tested
on a single core of a 2.4GHz CPU. N denotes the number of peo-
ple in a frame, which is 5.97 on average for PoseTrack val set.

For pose estimation we choose [20] as our baseline,
which proposes KE for spatial grouping. We also compare
with one alternative embedding approach [18] for design
justification. In BBox [18], instance location information
is encoded as the human bounding box (x, y, w, h) at each
pixel. The predicted bounding boxes are then used to group
keypoints into individuals. However, such representation
is hard to learn due to large variations of its embedding
space, resulting in worse pose estimation accuracy com-



pared to KE and SIE. KE provides part-level appearance
cues, while SIE encodes the human centroid constraints.
When combined together, a large gain is obtained (74.0%
vs. 70.9%/71.3%). As shown in Fig. 5, adding auxiliary
tasks (+aux) dramatically speeds up the training of KE, by
enforcing geometric constraints on the embedding space. It
also facilitates representation learning and marginally en-
hances pose estimation. As shown in Table 3, employing
PGG significantly improves the pose estimation accuracy
(2.3% for KE, 3.8% for SIE, and 2.7% for both combined).
End-to-end model training and direct grouping supervision
together account for the improvement. Additionally, using
the instance-agnostic pose mask, the memory consumption
is remarkably reduced to about 1%, as shown in Fig. 6(a),
demonstrating the efficiency of PGG. Combining both KE
and SIE with PGG, further boosts the pose estimation per-
formance to 77.0% mAP.

For pose tracking, we first build a baseline tracker based
on KE and/or SIE. It is assumed that KE and SIE change
smoothly in consecutive frames, K(ptj,k) ≈ K(pt+1

j,k ) and
S(ptj,k) ≈ S(pt+1

j,k ). Somewhat surprisingly, such a simple
tracker already achieves competitive performance, thanks
to the rich geometric information contained in KE and
SIE. Employing TemporalNet for tracking significantly im-
proves over the baseline tracker, because of the combina-
tion of the holistic appearance features of HE and tem-
poral smoothness of TIE. Finally, incorporating spatial-
temporal PGG to refine KE, SIE and TIE, further increase
the tracking performance (69.2% vs. 71.8% MOTA). We
also compare with some widely used alternative tracking
metrics, namely Object Keypoint Similarity (OKS), Inter-
section over Union (IoU) of persons and DeepMatching
(DM) [29] for design justification. We find that Tempo-
ralNet significantly outperform other trackers with task-
agnostic tracking metrics. OKS only uses keypoints for
handling occlusion, while IOU and DM only consider hu-
man in handling fast motion. In comparison, we kill two
birds with one stone.

MS-COCO Results. Our SpatialNet substantially im-
proves over our baseline [20] on single frame pose estima-
tion on the MS-COCO dataset. For fair comparisons, we
use the same train/val split as [20] for evaluation. Table 5
reports both single-scale (sscale) and multi-scale (mscale)
results. Four different scales {0.5, 1, 1.5, 2} are used
for multi-scale inference. Our sscale SpatialNet already
achieves competitive performance against mscale baseline.
By multi-scale inference, we further gain a significant im-
provement of 3% AP. All reported results are obtained with-
out model ensembling or pose refinement [3, 20].

4.4. Runtime Analysis

Fig. 6(b) analyzes the runtime performance of pose esti-
mation and tracking. For pose estimation, we compare with

Head Shou Elb Wri Hip Knee Ankl Total
BBox [18] 79.3 75.6 67.4 60.2 67.8 61.6 55.8 67.7
KE [20] 79.8 77.7 71.7 63.4 71.4 66.3 61.4 70.9
SIE 81.4 78.8 72.1 64.2 72.2 66.8 61.7 71.3
KE+SIE 82.2 80.1 74.7 67.4 75.1 69.4 64.6 74.0
KE+SIE+aux 82.3 80.3 74.9 67.8 75.2 70.1 65.6 74.3
KE+PGG 81.5 80.0 74.0 65.8 73.4 68.3 65.0 73.2
SIE+PGG 83.4 80.6 74.3 67.4 76.0 71.8 67.6 75.1
Ours 83.8 81.6 77.1 70.0 77.4 74.5 70.8 77.0

Table 3. Ablation study on single-frame pose estimation (AP) on
ICCV’17 PoseTrack validation set. aux means auxiliary train-
ing with geometric ordinal prediction. Ours (KE+SIE+aux+PGG)
combines KE+SIE+aux with PGG for accurate pose estimation.

MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA
Head Shou Elb Wri Hip Knee Ankl Total

OKS 60.1 60.4 54.5 47.1 58.4 57.0 53.7 56.2
IOU 62.5 63.6 54.3 45.5 59.3 53.6 48.6 55.8
DM [29] 62.9 64.0 54.6 45.7 59.6 53.8 48.7 56.1
KE 72.9 73.3 64.6 55.0 68.7 63.0 58.5 65.7
KE+SIE 75.4 76.1 67.0 57.1 70.9 64.4 59.4 67.7
HE 76.0 76.4 67.7 58.1 71.7 65.4 60.5 68.5
TIE 76.2 76.7 67.8 58.4 71.6 65.3 60.4 68.6
HE+TIE 76.9 77.2 68.4 58.6 72.4 66.0 61.2 69.2
Ours 78.7 79.2 71.2 61.1 74.5 69.7 64.5 71.8

Table 4. Ablation study on multi-person articulated tracking on
ICCV’17 PoseTrack validation set. Ours (HE+TIE+PGG) com-
bines HE+TIE with PGG grouping for robust tracking.

AP AP .50 AP .75 APM APL

Assoc. Embed. [20] (sscale) 0.592 0.816 0.646 0.505 0.725
Assoc. Embed. [20] (mscale) 0.654 0.854 0.714 0.601 0.735
Ours (sscale) 0.650 0.865 0.714 0.570 0.781
Ours (mscale) 0.680 0.878 0.747 0.626 0.761

Table 5. Multi-human pose estimation performance on the subset
of MS-COCO dataset. mscale means multi-scale testing.

both top-down and bottom-up [20] approaches. The top-
down pose estimator uses Faster RCNN [28] and a ResNet-
152 [10] based single person pose estimator (SPPE) [33].
Since it estimates pose for each person independently, the
runtime grows proportionally to the number of people.

Compared with [20], our SpatialNet significantly im-
proves the pose estimation accuracy with the increase of
limited computational complexity. For pose tracking, we
compare with the graph-cut based tracker (PoseTrack [14])
and show the efficiency of TemporalNet.

5. Conclusion

We have presented a unified pose estimation and track-
ing framework, which is composed of SpatialNet and Tem-
poralNet: SpatialNet tackles body part detection and part-
level spatial grouping, while TemporalNet accomplishes the
temporal grouping of human instances. We propose to ex-
tend KE and SIE in still images to HE appearance features
and TIE temporally consistent geometric features in videos
for robust online tracking. An effective and efficient Pose-
Guided Grouping module is proposed to gain the benefits of
full end-to-end learning of pose estimation and tracking.
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