

Connectionist Temporal Classification w Sheng Jin Hu Liu Institute for Artificial Intelligence Department of Automation, Tsingh Maximum Conditional Entro (EnCTC)

Introduction for CTC

Connectionist Temporal Classification (CTC) is a popular objective function for end-to-end sequence learning tasks, including speech recognition and scene text recognition.

CTC learns by maximum likelihood estimation over the summation of all feasible path probabilities,

$$L_{ctc} = -\log p(l|X) = -\log \sum_{\pi \in B^{-1}(l)} p(\pi|X)$$

• CTC peaky distribution problem

Output paths with peaky distribution. Output overconfident paths.

Lack exploration among feasible paths.

Figure1: scene text recognition predictions of an example image

We propose an entropy based regu the entropy of the feasible paths fr to better generalization and explor

 $L_{enctc} = L_{ctc} - \beta I$

where β controls the strength of the streng

$$H(p(\pi|l,X)) = -\sum_{\pi \in B^{-1}(l)} p(\pi|l,X)$$
$$= -\frac{1}{p(l|X)} \sum_{\pi \in B^{-1}(l)} p(\pi|l,X)$$

Equal Spacing CTC (EsCTC)

We propose to enforce equal spaci explicitly rule out the unreasonable

$$L_{esctc} = -\log \sum_{z \in C_{\tau,T}} \sum_{z \in C_{\tau,T$$

We further prove that among all se equal spacing one can reach the m $\arg \max \max H(p(r))$

with Maximum Entropy F Changshui Zhang ce, Tsinghua University (THUAI) ghua University, Beijing, P.R.China	Seg	zulariz	zation				N
opy Regularization for CTC		Resu	lts				
ularization term that prevents		En/Es(baseli	CTC achieve s ne and show	uperi bette	or perf	forman ralizati	nce to on ab
from decreasing too fast, leading fration.		0.6 0.5 0.4 0.3 0.2	Prediction Gradient CT	FC vs EnCTC	Gradient CTC v 0.6 0.5 0.4 0.3	VS ESCTC Gra 0.6 0.5 0.4 0.3 0.2	adient CTC vs En
$H(p(\pi l,X)),$							
the regularization.		0 4	8 12 16 20 24 0 4 8 1. Prediction Gradient CT 0.6	2 16 20 24 FC vs EnCTC	0 4 8 12 1 Gradient CTC v 0.6	L6 20 24 0 vs EsCTC Gra 0.6	4 8 12 16 2 adient CTC vs En
$\log p(\pi l,X)$		0.5 0.4 0.3 0.2 0.1 0.0	0.5 0.4 0.3 0.2 0.1 0.0		0.5 0.4 0.3 0.2 0.1 0.0	0.5 0.4 0.3 0.2 0.1 0.0	
$(\pi X)\log p(\pi X) + \log p(l X)$		-0.1 0 4	8 12 16 20 24 -0.1 0 4 8 12 Figure 1: The evol	^{2 16 20 24} -0	prediction	and error	4 8 12 16 2 signal
cing constraints in order to le alignments		Metho CTC CTC CTC EnCT EsCT EnEc	od Synth5k $+$ LS [31] 38.1 $+$ CP [27] 42.9 $+$ CP [27] 44.4 C 45.5 C 46.3 CTC 47.2		$ \begin{array}{c} \bullet \tau = 1 \\ 1 \\ 0.8 \\ 0.8 \\ 0.4 \\ 0.2 \\ 0 \\ 26 \\ \end{array} $	$\tau = 1.2$ $\tau = 1.5$	$\times \tau = 2 \tau = $
$-1 \leftrightarrow n(\pi X)$		Table1:	Evaluation of genera	lization	Figure2:	X Leng Path prur	gth (T) ning rate
$\pi \in B_Z^{-1}(l) P(\pi I I)$			Method	IC03	IC13	IIIT5K	SVT
$z_S \leq T, z_S \leq \tau \frac{1}{ l } $			CRNN [29] STAR-Net [19]	89.4 89.9	86.7 89.1	78.2 83.3	80.8 83.6
segmentation sequences, the			R2AM [17] RARE [30] FnCTC	88.7 90.1	90.0 88.6 90.0	78.4 81.9 82.6	80.7 81.9 81.5
$\pi(z,l,X) = z_{es}$			Enerce Escrc Enescrc	92.0 92.0	87.4 90.6	82.0 81.7 82.0	81.5 81.5 80.6
			Tablaz Camparica	nc with	tha atata A	of tho ort r	mathada

Tablez: Comparisons with the state-of-the-art methods